Publications by authors named "Crozier P"

Ridge detection is a classical tool to extract curvilinear features in image processing. As such, it has great promise in applications to material science problems; specifically, for trend filtering relatively stable atom-shaped objects in image sequences, such as bright-field Transmission Electron Microscopy (TEM) videos. Standard analysis of TEM videos is limited to frame-by-frame object recognition.

View Article and Find Full Text PDF

Materials functionalities may be associated with atomic-level structural dynamics occurring on the millisecond timescale. However, the capability of electron microscopy to image structures with high spatial resolution and millisecond temporal resolution is often limited by poor signal-to-noise ratios. With an unsupervised deep denoising framework, we observed metal nanoparticle surfaces (platinum nanoparticles on cerium oxide) in a gas environment with time resolutions down to 10 milliseconds at a moderate electron dose.

View Article and Find Full Text PDF

The European Green Deal aims to reduce the pesticide use, notably by developing biocontrol products to protect crops from diseases. Indeed, the use of significant amounts of chemicals negatively impact the environment such as soil microbial biodiversity or groundwater quality, and human health. Grapevine () was selected as one of the first targeted crop due to its economic importance and its dependence on fungicides to control the main damaging diseases worldwide: grey mold, downy and powdery mildews.

View Article and Find Full Text PDF

Photonic modes in dielectric nanostructures, e.g., wide gap semiconductor like CeO2 (ceria), have the potential for various applications such as information transmission and sensing technology.

View Article and Find Full Text PDF

In situ characterization of materials in their operational state is a highly active field of research. Investigating the structure and response of materials under stimuli that simulate real working environments for technological applications can provide new insight and unique input to the synthesis and design of novel materials. Over recent decades, experimental setups that allow different stimuli to be applied to a sample inside an electron microscope have been devised, built, and commercialized.

View Article and Find Full Text PDF

In this work, we employ density functional theory simulations to investigate possible spin polarization of CeO-(111) surface and its impact on the interactions between a ceria support and Pt nanoparticles. With a Gaussian type orbital basis, our simulations suggest that the CeO-(111) surface exhibits a robust surface spin polarization due to the internal charge transfer between atomic Ce and O layers. In turn, it can lower the surface oxygen vacancy formation energy and enhance the oxide reducibility.

View Article and Find Full Text PDF

Spatially resolved in situ transmission electron microscopy (TEM), equipped with direct electron detection systems, is a suitable technique to record information about the atom-scale dynamics with millisecond temporal resolution from materials. However, characterizing dynamics or fluxional behavior requires processing short time exposure images which usually have severely degraded signal-to-noise ratios. The poor signal-to-noise associated with high temporal resolution makes it challenging to determine the position and intensity of atomic columns in materials undergoing structural dynamics.

View Article and Find Full Text PDF

Reducible oxides are widely used catalyst supports that can increase oxidation reaction rates by transferring lattice oxygen at the metal-support interface. There are many outstanding questions regarding the atomic-scale dynamic meta-stability (i.e.

View Article and Find Full Text PDF

By photodeposition of CrO on SrTiO-based semiconductors doped with aliovalent Mg(II) and functionalized with Ni/NiO catalytic nanoparticles (economically significantly more viable than commonly used Rh catalysts), an increase in apparent quantum yield (AQYs) from ∼10 to 26% in overall water splitting was obtained. More importantly, deposition of CrO also significantly enhances the stability of Ni/NiO nanoparticles in the production of hydrogen, allowing sustained operation, even in intermittent cycles of illumination. elemental analysis of the water constituents during or after photocatalysis by inductively coupled plasma mass spectrometry/optical emission spectrometry shows that after CrO deposition, dissolution of Ni ions from Ni/NiO-Mg:SrTiO is significantly suppressed, in agreement with the stabilizing effect observed, when both Mg dopant and CrO are present.

View Article and Find Full Text PDF

Current generation electron monochromators employed as attachments to scanning transmission electron microscopes (STEM) offer the ability to obtain vibrational information from materials using electron energy-loss spectroscopy (EELS). We show here that in crystals, long- and short-wavelength phonon modes can be probed simultaneously with on-axis vibrational STEM EELS. The long-wavelength phonons are probed via dipole scattering, while the short-wavelength modes are probed via impact scattering of the incident electrons.

View Article and Find Full Text PDF

Oxide-supported noble metal catalysts have been extensively studied for decades for the water gas shift (WGS) reaction, a catalytic transformation central to a host of large volume processes that variously utilize or produce hydrogen. There remains considerable uncertainty as to how the specific features of the active metal-support interfacial bonding-perhaps most importantly the temporal dynamic changes occurring therein-serve to enable high activity and selectivity. Here we report the dynamic characteristics of a Pt/CeO system at the atomic level for the WGS reaction and specifically reveal the synergistic effects of metal-support bonding at the perimeter region.

View Article and Find Full Text PDF

Oxygen vacancy creation and annihilation are key processes in nonstoichiometric oxides such as CeO. The oxygen vacancy creation and annihilation rates on an oxide's surface partly govern its ability to exchange oxygen with the ambient environment, which is critical for a number of applications including energy technologies, environmental pollutant remediation, and chemical synthesis. Experimental methods to probe and correlate local oxygen vacancy reaction rates with atomic-level structural heterogeneities would provide significant information for the rational design and control of surface functionality; however, such methods have been unavailable to date.

View Article and Find Full Text PDF

Osteomalacia is a pathological bone condition consisting in a deficient primary mineralization of the matrix, leading to an accumulation of osteoid tissue and reduced bone mechanical strength. The amounts, properties and organization of bone constituents at tissue level, are known to influence its mechanical properties. It is then important to investigate the relationship between mechanical behavior and tissue composition at this scale in order to provide a better understanding of bone fragility mechanisms associates with this pathology.

View Article and Find Full Text PDF

The authors discuss the dipole vibrational modes that predominate in the energy-loss spectra of ionic materials below 1 eV, concentrating on thin-film specimens of typical transmission electron microscopy (TEM) thickness. The thickness dependence of the intensity is shown to be a useful guide to the bulk or surface character of vibrational peaks. The lateral and depth resolution of the energy-loss signal is investigated with the aid of finite-element calculations.

View Article and Find Full Text PDF

In situ environmental transmission electron microscopy (ETEM) is a powerful tool for observing structural modifications taking place in heterogeneous catalysts under reaction conditions. However, to strengthen the link between catalyst structure and functionality, an operando measurement must be performed in which reaction kinetics and catalyst structure are simultaneously determined. To determine chemical kinetics for gas-phase catalysis, it is necessary to develop a reliable chemical engineering model to describe catalysis as well as heat and mass transport processes within the ETEM cell.

View Article and Find Full Text PDF

In many materials systems, such as catalytic nanoparticles, the ability to characterize dynamic atomic structural changes is important for developing a more fundamental understanding of functionality. Recent developments in direct electron detection now allow image series to be acquired at frame rates on the order of 1000 frames per second in bright-field transmission electron microscopy (BF TEM), which could potentially allow dynamic changes in the atomic structure of individual nanoparticles to be characterized with millisecond temporal resolution in favorable cases. However, extracting such data from TEM image series requires the development of computational methods that can be applied to very large datasets and are robust in the presence of noise and in the non-ideal imaging conditions of some types of environmental TEM experiments.

View Article and Find Full Text PDF

The desire to image specimens in liquids has led to the development of open-cell and closed-cell techniques in transmission electron microscopy (TEM). The closed-cell approach is currently more common in TEM and has yielded new insights into a number of biological and materials processes in liquid environments. The open-cell approach, which requires an environmental TEM (ETEM), is technically challenging but may be advantageous in certain circumstances due to fewer restrictions on specimen and detector geometry.

View Article and Find Full Text PDF

Many nanoparticles in fields such as heterogeneous catalysis undergo surface structural fluctuations during chemical reactions, which may control functionality. These dynamic structural changes may be ideally investigated with time-resolved in situ electron microscopy. We have explored approaches for extracting quantitative information from large time-resolved image data sets with a low signal to noise recorded with a direct electron detector on an aberration-corrected transmission electron microscope.

View Article and Find Full Text PDF

Understanding the chemical and charge transport properties of grain boundaries (GBs) with high point defect concentrations (beyond the dilute solution limit) in polycrystalline materials is critical for developing ion-conducting solids for electrochemical energy conversion and storage. Elucidation and optimization of GBs are hindered by large variations in atomic structure, composition, and chemistry within nanometers or Ångstroms of the GB interface, which limits a fundamental understanding of electrical transport across and along GBs. Here we employ a novel correlated approach that is generally applicable to polycrystalline materials whose properties are affected by GB composition or chemistry.

View Article and Find Full Text PDF

In graphitic carbon nitrides, (photo)catalytic functionality is underpinned by the effect that residual hydrogen content, manifesting in amine (N-H ) defects, has on its optoelectronic properties. Therefore, a detailed understanding of the variation in the local structure of graphitic carbon nitrides is key for understanding structure-activity relationships. Here, we apply aloof-beam vibrational electron energy-loss spectroscopy in the scanning transmission electron microscope (STEM) to locally detect variations in hydrogen content in two different layered carbon nitrides with nanometer resolution.

View Article and Find Full Text PDF

High-resolution monochromated electron energy-loss spectroscopy has the potential to map vibrational modes at nanometer resolution. Using the SiO2/Si interface as a test case, we observe an initial drop in the SiO2 vibrational signal when the electron probe is 200 nm from the Si due to long-range nature of the Coulomb interaction. However, the distance from the interface at which the SiO2 integrated signal intensity drops to half its maximum value is 5 nm.

View Article and Find Full Text PDF

The enhancement of oxygen ionic conductivity by over two orders of magnitude in an electroceramic oxide is explicitly shown to result from nanoscale enrichment of a grain boundary layer or complexion with high solute concentration. A series of CaCeO polycrystalline oxides with fluorite structure and varying nominal Ca solute concentration elucidates how local grain boundary composition, rather than structural grain boundary character, primarily regulates ionic conductivity. A correlation between high grain boundary solute concentration above ∼40 mol%, and four orders of magnitude increase in grain boundary conductivity is explicitly shown.

View Article and Find Full Text PDF

Strategies for protecting unstable semiconductors include the utilization of surface layers composed of thin films deposited using atomic layer deposition (ALD). The protective layer is expected to (1) be stable against reaction with photogenerated holes, (2) prevent direct contact of the unstable semiconductor with the electrolyte, and (3) prevent the migration of ions through the semiconductor/electrolyte interface, while still allowing photogenerated carriers to transport to the interface and participate in the desired redox reactions. Zinc oxide (ZnO) is an attractive photocatalyst material due to its high absorption coefficient and high carrier mobilities.

View Article and Find Full Text PDF

In many materials systems, electron beam effects may substantially alter and destroy the structure of interest during observation. This is often true for the surface structures of catalytic nanoparticles where the functionality is associated with thin surface layers which are easily destroyed. The potential application of using aloof beam electron energy-loss spectroscopy as a non-destructive nanoscale surface characterization tool is discussed.

View Article and Find Full Text PDF

An isotope dilution congener-specific method for the determination of the most abundant and most toxic polychlorinated naphthalenes (PCNs) was developed using gas chromatography with high resolution mass spectrometry (GC-HRMS). The method was used to determine the concentration of 24 target congeners and total PCN concentrations in fish and sediment samples. Tissue samples were extracted using pressurized liquid extraction (PLE) and sediment samples were extracted using Soxhlet extraction.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session4fmrne6232bkaqpfdovveb86s56i8ao4): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once