Since the advent of Hi-C in 2009, a plethora of high-throughput sequencing methods have emerged to profile the three-dimensional (3D) organization of eukaryotic genomes, igniting the era of 3D genomics. In recent years, the genomic resolution achievable by these approaches has dramatically increased and several single-cell versions of Hi-C have been developed. Moreover, a new repertoire of tools not based on proximity ligation of digested chromatin has emerged, enabling the investigation of the higher-order organization of chromatin in the nucleus.
View Article and Find Full Text PDFThe identification of genes involved in replicative stress is key to understanding cancer evolution and to identify therapeutic targets. Here, we show that CDK12 prevents transcription-replication conflicts (TRCs) and the activation of cytotoxic replicative stress upon deregulation of the MYC oncogene. CDK12 was recruited at damaged genes by PARP-dependent DDR-signaling and elongation-competent RNAPII, to repress transcription.
View Article and Find Full Text PDFMicroscopy-based spatially resolved omic methods are transforming the life sciences. However, these methods rely on high numerical aperture objectives and cannot resolve crowded molecular targets, limiting the amount of extractable biological information. To overcome these limitations, here we develop Deconwolf, an open-source, user-friendly software for high-performance deconvolution of widefield fluorescence microscopy images, which efficiently runs on laptop computers.
View Article and Find Full Text PDFSomatic copy number alterations (SCNAs) are pervasive in advanced human cancers, but their prevalence and spatial distribution in early-stage, localized tumors and their surrounding normal tissues are poorly characterized. Here, we perform multi-region, single-cell DNA sequencing to characterize the SCNA landscape across tumor-rich and normal tissue in two male patients with localized prostate cancer. We identify two distinct karyotypes: 'pseudo-diploid' cells harboring few SCNAs and highly aneuploid cells.
View Article and Find Full Text PDFExtrachromosomal circular DNAs (eccDNAs) have emerged as important intra-cellular mobile genetic elements that affect gene copy number and exert in trans regulatory roles within the cell nucleus. Here, we describe scCircle-seq, a method for profiling eccDNAs and unraveling their diversity and complexity in single cells. We implement and validate scCircle-seq in normal and cancer cell lines, demonstrating that most eccDNAs vary largely between cells and are stochastically inherited during cell division, although their genomic landscape is cell type-specific and can be used to accurately cluster cells of the same origin.
View Article and Find Full Text PDFA recent publication in Nature by Arnould et al. describes a novel chromatin compartment, termed "damaged" or "D compartment," that facilitates the repair of DNA double-strand breaks but also increases the risk of potentially oncogenic translocation formation.
View Article and Find Full Text PDFEukaryotic genomes are spatially organized inside the cell nucleus, forming a threedimensional (3D) architecture that allows for spatial separation of nuclear processes and for controlled expression of genes required for cell identity specification and tissue homeostasis. Hence, it is of no surprise that mis-regulation of genome architecture through rearrangements of the linear genome sequence or epigenetic perturbations are often linked to aberrant gene expression programs in tumor cells. Increasing research efforts have shed light into the causes and consequences of alterations of 3D genome organization.
View Article and Find Full Text PDFCo-transcriptional RNA-DNA hybrids can not only cause DNA damage threatening genome integrity but also regulate gene activity in a mechanism that remains unclear. Here, we show that the nucleotide excision repair factor XPF interacts with the insulator binding protein CTCF and the cohesin subunits SMC1A and SMC3, leading to R-loop-dependent DNA looping upon transcription activation. To facilitate R-loop processing, XPF interacts and recruits with TOP2B on active gene promoters, leading to double-strand break accumulation and the activation of a DNA damage response.
View Article and Find Full Text PDFIn the past two decades, our understanding of how the genome of mammalian cells is spatially organized in the three-dimensional (3D) space of the nucleus and how key nuclear processes are orchestrated in this space has drastically expanded. While genome organization has been extensively studied at the nanoscale, the higher-order arrangement of individual portions of the genome with respect to their intranuclear as well as reciprocal placement is less thoroughly characterized. Emerging evidence points to the existence of a complex radial arrangement of chromatin in the nucleus.
View Article and Find Full Text PDFChromatin compaction is a key biophysical property that influences multiple DNA transactions. Lack of chromatin accessibility is frequently used as proxy for chromatin compaction. However, we currently lack tools for directly probing chromatin compaction at individual genomic loci.
View Article and Find Full Text PDFBackground: Despite the fact that tumor microenvironment (TME) and gene mutations are the main determinants of progression of the deadliest cancer in the world - lung cancer, their interrelations are not well understood. Digital pathology data provides a unique insight into the spatial composition of the TME. Various spatial metrics and machine learning approaches were proposed for prediction of either patient survival or gene mutations from this data.
View Article and Find Full Text PDFBackground: The "HER2-low" nomenclature identifies breast carcinomas (BCs) displaying a HER2 score of 1+/2+ in immunohistochemistry and lacking ERBB2 amplification. Whether HER2-low BCs (HLBCs) constitute a distinct entity is debated.
Methods: We performed DNA and RNA high-throughput analysis on 99 HLBC samples (n = 34 cases with HER2 score 1+/HLBC-1, n = 15 cases with HER2 score 2+ and ERBB2 not amplified/HLBC-2N, and n = 50 cases with score 2+ and ERBB2 copy number in the equivocal range/HLBC-2E).
Endogenous DNA double-strand breaks (DSBs) occurring in neural cells have been implicated in the pathogenesis of neurodevelopmental disorders (NDDs). Currently, a genomic map of endogenous DSBs arising during human neurogenesis is missing. Here, we applied in-suspension Breaks Labeling In Situ and Sequencing (sBLISS), RNA-Seq, and Hi-C to chart the genomic landscape of DSBs and relate it to gene expression and genome architecture in 2D cultures of human neuroepithelial stem cells (NES), neural progenitor cells (NPC), and post-mitotic neural cells (NEU).
View Article and Find Full Text PDFOver a decade ago the advent of high-throughput chromosome conformation capture (Hi-C) sparked a new era of 3D genomics. Since then the number of methods for mapping the 3D genome has flourished, enabling an ever-increasing understanding of how DNA is packaged in the nucleus and how the spatiotemporal organization of the genome orchestrates its vital functions. More recently, the next generation of spatial genomics technologies has begun to reveal how genome sequence and 3D genome organization vary between cells in their tissue context.
View Article and Find Full Text PDFSingle-molecule DNA fluorescence in situ hybridization (FISH) techniques enable studying the three-dimensional (3D) organization of the genome at the single cell level. However, there is a major unmet need for open access, high quality, curated and reproducible DNA FISH datasets. Here, we describe a dataset obtained by applying our recently developed iFISH method to simultaneously visualize 16 small (size range: 62-73 kilobases, kb) DNA loci evenly spaced on chromosome 2 in human cells, in a single round of hybridization.
View Article and Find Full Text PDFA growing body of evidence points to a role of nuclear RNAs (nucRNAs) in shaping the three-dimensional (3D) architecture of the genome within the nucleus of a eukaryotic cell. nucRNAs are non-homogeneously distributed within the nucleus where they can form global and local gradients that might contribute to instructing the formation and coordinating the function of different types of 3D genome structures. In this article, we highlight the available literature supporting a role of nucRNAs as 3D genome shapers and propose that nucRNA gradients are key mediators of genome structure and function.
View Article and Find Full Text PDFEmerging data indicate that genomic alterations can shape immune cell composition in early breast cancer. However, there is a need for complementary imaging and sequencing methods for the quantitative assessment of combined somatic copy number alteration (SCNA) and immune profiling in pathological samples. Here, we tested the feasibility of three approaches-CUTseq, for high-throughput low-input SCNA profiling, multiplexed fluorescent immunohistochemistry (mfIHC) and digital-image analysis (DIA) for quantitative immuno-profiling- in archival formalin-fixed paraffin-embedded (FFPE) tissue samples from patients enrolled in the randomized SBG-2004-1 phase II trial.
View Article and Find Full Text PDFOncogene-induced senescence (OIS) is an inherent and important tumor suppressor mechanism. However, if not removed timely via immune surveillance, senescent cells also have detrimental effects. Although this has mostly been attributed to the senescence-associated secretory phenotype (SASP) of these cells, we recently proposed that "escape" from the senescent state is another unfavorable outcome.
View Article and Find Full Text PDFAs cells enter mitosis, chromatin compacts to facilitate chromosome segregation yet remains transcribed. Transcription supercoils DNA to levels that can impede further progression of RNA polymerase II (RNAPII) unless it is removed by DNA topoisomerase 1 (TOP1). Using ChIP-seq on mitotic cells, we found that TOP1 is required for RNAPII translocation along genes.
View Article and Find Full Text PDFSomatic copy number alterations (SCNAs) are a pervasive trait of human cancers that contributes to tumorigenesis by affecting the dosage of multiple genes at the same time. In the past decade, The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) initiatives have generated and made publicly available SCNA genomic profiles from thousands of tumor samples across multiple cancer types. Here, we present a comprehensive analysis of 853,218 SCNAs across 10,729 tumor samples belonging to 32 cancer types using TCGA data.
View Article and Find Full Text PDFWhile mass-scale vaccination campaigns are ongoing worldwide, genomic surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical to monitor the emergence and global spread of viral variants of concern (VOC). Here, we present a streamlined workflow-COVseq-which can be used to generate highly multiplexed sequencing libraries compatible with Illumina platforms from hundreds of SARS-CoV-2 samples in parallel, in a rapid and cost-effective manner. We benchmark COVseq against a standard library preparation method (NEBNext) on 29 SARS-CoV-2 positive samples, reaching 95.
View Article and Find Full Text PDF