Black sigatoka disease (BSD) is the most important foliar threat in banana production, and breeding efforts against it should take advantage of genomic selection (GS), which has become one of the most explored tools to increase genetic gain, save time, and reduce selection costs. To evaluate the potential of GS in banana for BSD, 210 triploid accessions were obtained from the African Banana and Plantain Research Center to constitute a training population. The variability in the population was assessed at the phenotypic level using BSD- and agronomic-related traits and at the molecular level using single-nucleotide polymorphisms (SNPs).
View Article and Find Full Text PDFGenomic selection (GS) is an effective method for the genetic improvement of complex traits in plants and animals. Optimization approaches could be used in conjunction with GS to further increase its efficiency and to limit inbreeding, which can increase faster with GS. Mate selection (MS) typically uses a metaheuristic optimization algorithm, simulated annealing, to optimize the selection of individuals and their matings.
View Article and Find Full Text PDFUnlabelled: To overcome the multiple challenges currently faced by agriculture, such as climate change and soil deterioration, more efficient plant breeding strategies are required. Genomic selection (GS) is crucial for the genetic improvement of quantitative traits, as it can increase selection intensity, shorten the generation interval, and improve selection accuracy for traits that are difficult to phenotype. Tropical perennial crops and plantation trees are of major economic importance and have consequently been the subject of many GS articles.
View Article and Find Full Text PDFIn the perspective of investigating genomic selection (GS) among Musa genotypes in West and Central Africa, banana accessions were phenotyped under natural drought stress in Benin and genotyped using genotyping by sequencing. Sixty-one (61) accessions grouped into three major genomic groups AAA, AAB and ABB and those without genomic affiliation information were used. Variation within the population was determined by phenotypic variables while population structure and clustering analysis were carried out to understand the genetic diversity at the molecular level.
View Article and Find Full Text PDFGenomic selection (GS) in plant breeding is explored as a promising tool to solve the problems related to the biotic and abiotic threats. Polyploid plants like bananas ( spp.) face the problem of drought and black sigatoka disease (BSD) that restrict their production.
View Article and Find Full Text PDFA good knowledge of the genome properties of the populations makes it possible to optimize breeding methods, in particular genomic selection (GS). In oil palm (Elaeis guineensis Jacq), the world's main source of vegetable oil, this would provide insight into the promising GS results obtained so far. The present study considered two complex breeding populations, Deli and La Mé, with 943 individuals and 7324 single-nucleotide polymorphisms (SNPs) from genotyping-by-sequencing.
View Article and Find Full Text PDFGenomic selection (GS) is a method of marker-assisted selection revolutionizing crop improvement, but it can still be optimized. For hybrid breeding between heterozygote parents of different populations or species, specific aspects can be considered to increase GS accuracy: (1) training population genotyping, i.e.
View Article and Find Full Text PDFGenotyping-by-sequencing (GBS) provides the marker density required for genomic predictions (GP). However, GBS gives a high proportion of missing SNP data which, for species without a chromosome-level genome assembly, must be imputed without knowing the SNP physical positions. Here, we compared GP accuracy with seven map-independent and two map-dependent imputation approaches, and when using all SNPs against the subset of genetically mapped SNPs.
View Article and Find Full Text PDFThe prediction of clonal genetic value for yield is challenging in oil palm (Elaeis guineensis Jacq.). Currently, clonal selection involves two stages of phenotypic selection (PS): ortet preselection on traits with sufficient heritability among a small number of individuals in the best crosses in progeny tests, and final selection on performance in clonal trials.
View Article and Find Full Text PDFPolyhexamethylene biguanide (PHMB), an amphiphilic polymeric biocide, increased liver tumor incidence in male and female rats at 1000 and 1500 mg/L in drinking water, but not at 500 mg/L in previous studies. In another study, PHMB administered in diet at 4000 mg/kg was negative for hepatocellular tumors. The present studies evaluated bioavailability and distribution of PHMB administered in drinking water and diet and possible modes of action (MOA).
View Article and Find Full Text PDFBackground: There is great potential for the genetic improvement of oil palm yield. Traditional progeny tests allow accurate selection but limit the number of individuals evaluated. Genomic selection (GS) could overcome this constraint.
View Article and Find Full Text PDFBackground: Elaeis guineensis is the world's leading source of vegetable oil, and the demand is still increasing. Oil palm breeding would benefit from marker-assisted selection but genetic studies are scarce and inconclusive. This study aims to identify genetic bases of oil palm production using a pedigree-based approach that is innovative in plant genetics.
View Article and Find Full Text PDFHybrids are broadly used in plant breeding and accurate estimation of variance components is crucial for optimizing genetic gain. Genome-wide information may be used to explore models designed to assess the extent of additive and non-additive variance and test their prediction accuracy for the genomic selection. Ten linear mixed models, involving pedigree- and marker-based relationship matrices among parents, were developed to estimate additive (A), dominance (D) and epistatic (AA, AD and DD) effects.
View Article and Find Full Text PDFBackground: To study the potential of genomic selection for heterosis resulting from multiplicative interactions between additive and antagonistic components, we focused on oil palm, where bunch production is the product of bunch weight and bunch number. We simulated two realistic breeding populations and compared current reciprocal recurrent selection (RRS) with reciprocal recurrent genomic selection (RRGS) over four generations. All breeding strategies aimed at selecting the best individuals in parental populations to increase bunch production in hybrids.
View Article and Find Full Text PDFThe edibility of different Elaeis sp. breeding populations present in Benin was tested for the leaf miner Coelaenomenodera lameensis Berti (Coleoptera: Chrysomelidae), a major oil palm pest in Africa. Experiments carried out in sleeves revealed the oviposition capacities of females and the mortality rates for the different developmental stages by comparing the populations found on two breeding populations of Elaeis oleifera (HBK) Cortes, four of Elaeis guineensis Jacquin and four (E.
View Article and Find Full Text PDFGenomic selection empirically appeared valuable for reciprocal recurrent selection in oil palm as it could account for family effects and Mendelian sampling terms, despite small populations and low marker density. Genomic selection (GS) can increase the genetic gain in plants. In perennial crops, this is expected mainly through shortened breeding cycles and increased selection intensity, which requires sufficient GS accuracy in selection candidates, despite often small training populations.
View Article and Find Full Text PDFInt J Environ Res Public Health
August 2014
Poly(HexaMethylene Biguanide) hydrochloride (PHMB) CAS No. [32289-58-0] is a particularly effective member of the biguanides antiseptic chemical group, and has been in use since the early fifties in numerous applications. It has been proposed that PHMB be classified as a category 3 carcinogen although PHMB is not genotoxic.
View Article and Find Full Text PDFWe searched for quantitative trait loci (QTL) associated with the palm oil fatty acid composition of mature fruits of the oil palm E. guineensis Jacq. in comparison with its wild relative E.
View Article and Find Full Text PDFDielectric resonators are key elements in many applications in micro to millimeter wave circuits, including ultra-narrow band filters and frequency-determining components for precision frequency synthesis. Distributed-layered and bulk low-loss crystalline and polycrystalline dielectric structures have become very important for building these devices. Proper design requires careful electromagnetic characterization of low-loss material properties.
View Article and Find Full Text PDFExplicit pedigree reconstruction by simulated annealing gave reliable estimates of genealogical coancestry in plant species, especially when selfing rate was lower than 0.6, using a realistic number of markers. Genealogical coancestry information is crucial in plant breeding to estimate genetic parameters and breeding values.
View Article and Find Full Text PDFCylindrical re-entrant cavities are unique three-dimensional structures that resonate with their electric and magnetic fields in separate parts of the cavity. To further understand these devices, we undertake rigorous analysis of the properties of the resonance using "in-house" developed Finite Element Method (FEM) software capable of dealing with small gap structures of extreme aspect ratio. Comparisons between the FEM method and experiments are consistent and we illustrate where predictions using established lumped element models work well and where they are limited.
View Article and Find Full Text PDFThe oil palm fruit mesocarp contains high lipase activity that increases free fatty acids and necessitates post-harvest inactivation by heat treatment of fruit bunches. Even before heat treatment the mesocarp lipase activity causes consequential oil losses and requires costly measures to limit free fatty acids quantities. Here we demonstrate that elite low-lipase lines yield oil with substantially less free fatty acids than standard genotypes, allowing more flexibility for post-harvest fruit processing and extended ripening for increased yields.
View Article and Find Full Text PDFGenetic prediction for complex traits is usually based on models including individual (infinitesimal) or marker effects. Here, we concentrate on models including both the individual and the marker effects. In particular, we develop a "Mendelian segregation" model combining infinitesimal effects for base individuals and realized Mendelian sampling in descendants described by the available DNA data.
View Article and Find Full Text PDFObjective: To better define the pathophysiologic mechanisms underlying the development of the novel facial-onset sensory and motor neuronopathy (FOSMN) syndrome and, in particular, to determine whether neurodegenerative processes, mediated by excitotoxicity, or autoimmune mechanisms contribute to the development of FOSMN syndrome.
Methods: Clinical, laboratory, neurophysiologic, and pathologic assessments were undertaken for 5 patients with FOSMN syndrome (3 male and 2 female), the largest cohort of FOSMN syndrome reported to date. In addition to conventional neurophysiologic studies, novel threshold tracking transcranial magnetic stimulation (TMS) techniques were undertaken to assess for the presence of cortical excitability.
The transcription factor EGR2 is expressed in Schwann cells, where it controls peripheral nerve myelination. Mutations of EGR2 have been found in patients with congenital hypomyelinating neuropathy or Charcot-Marie-Tooth disease type 1D. In a patient with congenital amyelinating neuropathy, we observed pathological abnormalities recapitulating the peripheral nervous system phenotype of homozygous Egr2-null mice.
View Article and Find Full Text PDF