The brain's neuroreparative capacity after injuries such as ischemic stroke is partly contained in the brain's neurogenic niches, primarily the subventricular zone (SVZ), which lies in close contact with the cerebrospinal fluid (CSF) produced by the choroid plexus (ChP). Despite the wide range of their proposed functions, the ChP/CSF remain among the most understudied compartments of the central nervous system (CNS). Here, we report a mouse genetic tool (the ROSA26iDTR mouse line) for noninvasive, specific, and temporally controllable ablation of CSF-producing ChP epithelial cells to assess the roles of the ChP and CSF in brain homeostasis and injury.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2024
The specific roles that different types of neurons play in recovery from injury is poorly understood. Here, we show that increasing the excitability of ipsilaterally projecting, excitatory V2a neurons using designer receptors exclusively activated by designer drugs (DREADDs) restores rhythmic bursting activity to a previously paralyzed diaphragm within hours, days, or weeks following a C2 hemisection injury. Further, decreasing the excitability of V2a neurons impairs tonic diaphragm activity after injury as well as activation of inspiratory activity by chemosensory stimulation, but does not impact breathing at rest in healthy animals.
View Article and Find Full Text PDFThe brain's neuroreparative capacity after injuries such as ischemic stroke is contained in the brain's neurogenic niches, primarily the subventricular zone (SVZ), which lies in close contact with the cerebrospinal fluid (CSF) produced by the choroid plexus (ChP). Despite the wide range of their proposed functions, the ChP/CSF remain among the most understudied compartments of the central nervous system (CNS). Here we report a mouse genetic tool (the ROSA26iDTR mouse line) for non-invasive, specific, and temporally controllable ablation of CSF-producing ChP epithelial cells to assess the roles of the ChP and CSF in brain homeostasis and injury.
View Article and Find Full Text PDFThe forebrain plays important roles in many critical functions, including the control of breathing. We propose that the forebrain is important for ensuring that breathing matches current and anticipated behavioral, emotional, and physiological needs. This review will summarize anatomical and functional evidence implicating forebrain regions in the control of breathing.
View Article and Find Full Text PDFPseudomonas aeruginosa inhibits or eradicates Staphylococcus aureus in most in vitro settings. Nonetheless, P. aeruginosa and S.
View Article and Find Full Text PDFBackground: Two recently developed novel rodent models have been reported to ablate microglia, either by genetically targeting microglia (via Cx3cr1-creER: iDTR + Dtx) or through pharmacologically targeting the CSF1R receptor with its inhibitor (PLX5622). Both models have been widely used in recent years to define essential functions of microglia and have led to high impact studies that have moved the field forward.
Methods: Using either Cx3cr1-iDTR mice in combination with Dtx or via the PLX5622 diet to pharmacologically ablate microglia, we compared the two models via MRI and histology to study the general anatomy of the brain and the CSF/ventricular systems.
During the current COVID-19 pandemic, different methods have been used to evaluate patients with suspected SARS-CoV-2 infection. In this study, we experimentally evaluate the ability of spiked saliva-moist swabs and spiked swabs without any transport medium to retain SARS-CoV-2 for storage and transport at different environmental settings during different incubation time periods. Our results show that at ambient temperature of 20°C, SARS-CoV-2 RNA remains stable for up to 9 days allowing a long-time span for transport and storage without compromising clinical results.
View Article and Find Full Text PDFThe spinal cord contains a diverse array of sensory and motor circuits that are essential for normal function. Spinal cord injury (SCI) permanently disrupts neural circuits through initial mechanical damage, as well as a cascade of secondary injury events that further expand the spinal cord lesion, resulting in permanent paralysis. Tissue clearing and 3D imaging have recently emerged as promising techniques to improve our understanding of the complex neural circuitry of the spinal cord and the changes that result from damage due to SCI.
View Article and Find Full Text PDFAt the liquid-gas phase transition in water, the density has a discontinuity at atmospheric pressure; however, the line of these first-order transitions defined by increasing the applied pressure terminates at the critical point, a concept ubiquitous in statistical thermodynamics. In correlated quantum materials, it was predicted and then confirmed experimentally that a critical point terminates the line of Mott metal-insulator transitions, which are also first-order with a discontinuous charge carrier density. In quantum spin systems, continuous quantum phase transitions have been controlled by pressure, applied magnetic field and disorder, but discontinuous quantum phase transitions have received less attention.
View Article and Find Full Text PDFObjectives: The worldwide emergence of antibiotic resistance calls for effective exploitation of existing antibiotics. Antibiotic combinations with different modes of action can synergize for successful treatment. In the present study, we used microcalorimetry screening to identify synergistic combination treatments against clinical MDR isolates.
View Article and Find Full Text PDFBackground: Chronic obstructive pulmonary disease (COPD) contributes significantly to mortality, hospitalisations and health care costs worldwide. There is evidence that the detection, accurate diagnosis and management of COPD are currently suboptimal in primary care. Physiotherapists are well-trained in cardiorespiratory management and chronic care but are currently underutilised in primary care.
View Article and Find Full Text PDFThe purpose was to evaluate the eradicative effect of acetic acid on bacterial biofilm grown on tympanostomy tubes by an in vitro experiment. Biofilms of Pseudomonas aeruginosa and Staphylococcus aureus were grown on sterile tympanostomy tubes for 24 h. The tubes were treated with acetic acid solutions at various concentrations for 24 h.
View Article and Find Full Text PDFRespiratory motor failure is the leading cause of death in spinal cord injury (SCI). Cervical injuries disrupt connections between brainstem neurons that are the primary source of excitatory drive to respiratory motor neurons in the spinal cord and their targets. In addition to direct connections from bulbospinal neurons, respiratory motor neurons also receive excitatory and inhibitory inputs from propriospinal neurons, yet their role in the control of breathing is often overlooked.
View Article and Find Full Text PDFPseudomonas aeruginosa is generally described as ubiquitous in natural settings, such as soil and water. However, because anecdotal observations and published reports have questioned whether or not this description is true, we undertook a rigorous study using three methods to investigate the occurrence of P. aeruginosa: We investigated environmental samples, analyzed 16S rRNA data, and undertook a systematic review and meta-analysis of published data.
View Article and Find Full Text PDFInduction of a non-culturable state has been demonstrated for many bacteria, e.g., and various spp.
View Article and Find Full Text PDFBreathing requires precise control of respiratory muscles to ensure adequate ventilation. Neurons within discrete regions of the brainstem produce oscillatory activity to control the frequency of breathing. Less is understood about how spinal and pontomedullary networks modulate the activity of respiratory motor neurons to produce different patterns of activity during different behaviors (i.
View Article and Find Full Text PDFLittle is known about the organizational and functional connectivity of the corticospinal (CS) circuits that are essential for voluntary movement. Here, we map the connectivity between CS neurons in the forelimb motor and sensory cortices and various spinal interneurons, demonstrating that distinct CS-interneuron circuits control specific aspects of skilled movements. CS fibers originating in the mouse motor cortex directly synapse onto premotor interneurons, including those expressing Chx10.
View Article and Find Full Text PDFAccessory respiratory muscles help to maintain ventilation when diaphragm function is impaired. The following protocol describes a method for repeated measurements over weeks or months of accessory respiratory muscle activity while simultaneously measuring ventilation in a non-anesthetized, freely behaving mouse. The technique includes the surgical implantation of a radio transmitter and the insertion of electrode leads into the scalene and trapezius muscles to measure the electromyogram activity of these inspiratory muscles.
View Article and Find Full Text PDFInspiratory accessory respiratory muscles (ARMs) enhance ventilation when demands are high, such as during exercise and/or pathological conditions. Despite progressive degeneration of phrenic motor neurons innervating the diaphragm, amyotrophic lateral sclerosis (ALS) patients and rodent models are able to maintain ventilation at early stages of disease. In order to assess the contribution of ARMs to respiratory compensation in ALS, we examined the activity of ARMs and ventilation throughout disease progression in SOD1 ALS model mice at rest using a combination of electromyography and unrestrained whole body plethysmography.
View Article and Find Full Text PDFObjective: Bacterial biofilms remain difficult to treat. The biofilm mode of growth enables bacteria to survive antibiotic treatment and the inflammatory reaction. Low-frequency ultrasound has recently been shown to improve healing in a variety of settings.
View Article and Find Full Text PDFAim: A nationwide 24-month study was conducted (2007-2009), via the New Zealand Paediatric Surveillance Unit to define epidemiology and clinical features of acute poststreptococcal glomerulonephritis (APSGN) in children hospitalised with the illness.
Methods: Paediatricians (n = 215) were requested to report new hospitalised cases fulfilling a case definition of definite (haematuria with low C3 and high streptococcal titres or biopsy proven APSGN) or probable (haematuria with low C3 or high streptococcal titres).
Results: A total of 176 cases were identified (definite: n = 138, probable: n = 38) with 63% residing in the Auckland metropolitan region.
Background: Gastric cancer is the second most common cause of cancer-related death in the world. Inflammatory signals originating from gastric cancer cells are important for recruiting inflammatory cells and regulation of metastasis of gastric cancer. Several microRNAs (miRNA) have been shown to be involved in development and progression of gastric cancer.
View Article and Find Full Text PDFNeural networks called central pattern generators (CPGs) generate repetitive motor behaviors such as locomotion and breathing. Glutamatergic neurons are required for the generation and inhibitory neurons for the patterning of the motor activity associated with repetitive motor behaviors. In the mouse, glutamatergic V2a neurons coordinate the activity of left and right leg CPGs in the spinal cord enabling mice to generate an alternating gait.
View Article and Find Full Text PDF