RNA aptamers are relatively short nucleic acid sequences that bind targets with high affinity, and when combined with a riboswitch that initiates translation of a fluorescent reporter protein, can be used as a biosensor for chemical detection in various types of media. These processes span target binding at the molecular scale to fluorescence detection at the macroscale, which involves a number of intermediate rate-limiting physical (e.g.
View Article and Find Full Text PDFIn situ bioaugmentation for cleanup of an hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)-contaminated groundwater plume was recently demonstrated. Results of a forced-gradient, field-scale cell transport test with Gordonia sp. KTR9 and Pseudomonas fluorescens strain I-C cells (henceforth "KTR9" and "Strain I-C") showed these strains were transported 13 m downgradient over 1 month.
View Article and Find Full Text PDFClimate warming in the Arctic and the thawing of frozen carbon stocks are leading to uncertainty as to how bacterial communities will respond, including pollutant degrading bacteria. This study investigated the effects of carbon stimulation and temperature on soil microbial community diversity and explosive biodegradation in two sub-Arctic soils. Chitin as a labile carbon source stimulated overall microbial activities as reflected by increases in basal respiration (three to tenfold) and potential nitrification activity (two to fourfold) compared to unamended soil.
View Article and Find Full Text PDFExplosives such as hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) are common contaminants found in soil and groundwater at military facilities worldwide, but large-scale monitoring of these contaminants at low concentrations is difficult. Biosensors that incorporate aptamers with high affinity and specificity for a target are a novel way of detecting these compounds. This work describes novel riboswitch-based biosensors for detecting RDX.
View Article and Find Full Text PDFDegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in laboratory columns following biostimulation and bioaugmentation was investigated using sediment and groundwater from a contaminated aquifer at a US Navy facility. No RDX degradation was observed following aerobic biostimulation with either fructose or lactate (both 0.1 mM) prior to bioaugmentation.
View Article and Find Full Text PDFJ Ind Microbiol Biotechnol
July 2017
The biodegradation potential of insensitive munition melt cast formulations IMX101 and IMX104 was investigated in two unamended training range soils under aerobic and anaerobic growth conditions. Changes in community profiles in soil microcosms were monitored via high-throughput 16S rRNA sequencing over the course of the experiments to infer key microbial phylotypes that may be linked to IMX degradation. Complete anaerobic biotransformation occurred for IMX101 and IMX104 constituents 2,4-dinitroanisole (DNAN) and 3-nitro-1,2,4-triazol-5-one during the 30-day incubation period with Camp Shelby (CS) soil.
View Article and Find Full Text PDFHexahydro-1,3,5-trinitro-1,3,5,-triazine (RDX) is a toxic and mobile groundwater contaminant common to military sites. This study compared in situ RDX degradation rates following bioaugmentation with Gordonia sp. strain KTR9 (henceforth KTR9) to rates under biostimulation conditions in an RDX-contaminated aquifer in Umatilla, OR.
View Article and Find Full Text PDFRemoval of 3-nitro-1,2,4-triazol-5-one (NTO) was investigated in conjunction with heterotrophic and autotrophic denitrifying growth conditions by a microbial consortium from a wastewater treatment plant. Microcosms were supplemented with molasses, methanol, or thiosulfate. Cultures were passaged twice by transferring 10 % of the culture volume to fresh media on days 11 and 21.
View Article and Find Full Text PDFIn situ bioaugmentation with aerobic hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)-degrading bacteria is being considered for treatment of explosives-contaminated groundwater at Umatilla Chemical Depot, Oregon (UMCD). Two forced-gradient bacterial transport tests of site groundwater containing chloride or bromide tracer and either a mixed culture of Gordonia sp. KTR9 (xplA (+)Km(R)), Rhodococcus jostii RHA1 (pGKT2 transconjugant; xplA (+)Km(R)) and Pseudomonas fluorescens I-C (xenB (+)), or a single culture of Gordonia sp.
View Article and Find Full Text PDFThe potential for bioaugmentation with aerobic explosive degrading bacteria to remediate hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) contaminated aquifers was demonstrated. Repacked aquifer sediment columns were used to examine the transport and RDX degradation capacity of the known RDX degrading bacterial strains Gordonia sp. KTR9 (modified with a kanamycin resistance gene) Pseudomonas fluorescens I-C, and a kanamycin resistant transconjugate Rhodococcus jostii RHA1 pGKT2:Km+.
View Article and Find Full Text PDFHexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a widely used explosive and a major soil and groundwater contaminant. Organisms such as Gordonia sp. KTR9, capable of degrading RDX and using it as an N source, may prove useful for bioremediation of contaminated sites.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
May 2014
Microscale patterned surfaces have been shown to control the arrangement of bacteria attached to surfaces. This study was conducted to examine the effect of patterned topographies on bacterial fouling using Enterobacter cloacae as the test model. E.
View Article and Find Full Text PDFCharacterization of nanomaterials must include analysis of both size and chemical composition. Many analytical techniques, such as dynamic light scattering (DLS), are capable of measuring the size of suspended nanometer-sized particles, yet provide no information on the composition of the particle. While field flow fractionation (FFF) is a powerful nanoparticle sizing technique, common detectors used in conjunction with the size separation, including UV, light-scattering, and fluorescence spectroscopy, do not provide the needed particle compositional information.
View Article and Find Full Text PDFThe transcriptome of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine)-degrading strain Gordonia sp. strain KTR9 and its glnR mutant were studied as a function of nitrogen availability to further investigate the observed ammonium-mediated inhibition of RDX degradation. The results indicate that nitrogen availability is a major determinant of RDX degradation and xplA gene expression in KTR9.
View Article and Find Full Text PDFWhole-genome sequencing, transcriptomic analyses, and metabolic reconstruction were used to investigate Gordonia sp. strain KTR9's ability to catabolize a range of compounds, including explosives and steroids. Aspects of this mycolic acid-containing actinobacterium's catabolic potential were experimentally verified and compared with those of rhodococci and mycobacteria.
View Article and Find Full Text PDFHexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a cyclic nitramine explosive commonly used for military applications that is responsible for severe soil and groundwater contamination. In this study, Shewanella oneidensis MR-1 was shown to efficiently degrade RDX anaerobically (3.5 µmol·h(-1)·(g protein)(-1)) via two initial routes: (1) sequential N-NO(2) reductions to the corresponding nitroso (N-NO) derivatives (94% of initial RDX degradation) and (2) denitration followed by ring cleavage.
View Article and Find Full Text PDFAims: Hexahydro-1,3,5-trinitro-1,3,5,-triazine (RDX) is a cyclic nitramine explosive that is a major component in many high-explosive formulations and has been found as a contaminant of soil and groundwater. The RDX-degrading gene locus xplAB, located on pGKT2 in Gordonia sp. KTR9, is highly conserved among isolates from disparate geographical locations suggesting a horizontal gene transfer (HGT) event.
View Article and Find Full Text PDFSeveral microorganisms have been isolated that can transform hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), a cyclic nitramine explosive. To better characterize the microbial genes that facilitate this transformation, we sequenced and annotated a 182-kb plasmid, pGKT2, from the RDX-degrading strain Gordonia sp. KTR9.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
November 2006
Cyclic nitramine explosives are synthesized globally mainly as military munitions, and their use has resulted in environmental contamination. Several biodegradation pathways have been proposed, and these are based mainly on end-product characterization because many of the metabolic intermediates are hypothetical and unstable in water. Biodegradation mechanisms for cyclic nitramines include (a) formation of a nitramine free radical and loss of nitro functional groups, (b) reduction of nitro functional groups, (c) direct enzymatic cleavage, (d) alpha-hydroxylation, or (e) hydride ion transfer.
View Article and Find Full Text PDFHexahydro-1,3,5-trinitro-1,3,5,-triazine (RDX) is a cyclic nitramine explosive that is a major component in many military high-explosive formulations. In this study, we developed a real-time TaqMan polymerase chain reaction (PCR) that targets the xplA functional gene involved in the breakdown/transformation of RDX. The xplA gene, described previously [Seth-Smith, H.
View Article and Find Full Text PDFHexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a cyclic nitroamine explosive that is a major component in many military high-explosive formulations. In this study, two aerobic bacteria that are capable of using RDX as the sole source of carbon and nitrogen to support their growth were isolated from surface soil. These bacterial strains were identified by their fatty acid profiles and 16S ribosomal gene sequences as Williamsia sp.
View Article and Find Full Text PDFThe caged cyclic nitramine 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) is a new explosive that has the potential to replace existing military explosives, but little is known about its environmental toxicity, transport, and fate. We quantified and compared the aerobic environmental fate of CL-20 to the widely used cyclic nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in surface and subsurface soil microcosms. Soil-free controls and biologically attenuated soil controls were used to separate abiotic processes from biologically mediated processes.
View Article and Find Full Text PDFThis study was undertaken in an effort to understand how the population structure of bacteria within terrestrial deep-subsurface environments correlates with the physical and chemical structure of their environment. Phylogenetic analysis was performed on strains of Arthrobacter that were collected from various depths, which included a number of different sedimentary units from the Yakima Barricade borehole at the U.S.
View Article and Find Full Text PDFForty strains of Gram-positive, aerobic, heterotrophic bacteria isolated from saturated subsurface lacustrine, paleosol and fluvial sediments at the US Department of Energy's Hanford Site in south central Washington State were characterized by phylogenetic analysis of 16S rRNA gene sequences and by determination of selected morphological, physiological and biochemical traits. Phylogenetic analyses of 16S rDNA sequences from subsurface isolates in the context of similar sequences from previously described bacterial species indicated that 38 of the subsurface strains were most closely related to Arthrobacter: The other two strains appeared to be most closely related to Kocuria. The subsurface isolates fell into seven phylogenetically coherent and distinct clusters, indicating that there was a significant degree of diversity among them.
View Article and Find Full Text PDFThe Subsurface Microbial Culture Collection (SMCC) was established by the U.S. Dept.
View Article and Find Full Text PDF