Publications by authors named "Crocella V"

Emissions reduction and greenhouse gas removal from the atmosphere are both necessary to achieve net-zero emissions and limit climate change. There is thus a need for improved sorbents for the capture of carbon dioxide from the atmosphere, a process known as direct air capture. In particular, low-cost materials that can be regenerated at low temperatures would overcome the limitations of current technologies.

View Article and Find Full Text PDF

We report the discovery and characterization of two porous Ce(III)-based metal-organic frameworks (MOFs) with the V-shaped linker molecules 4,4'-sulfonyldibenzoate (SDB) and 4,4'-(hexafluoroisopropylidene)bis(benzoate) (hfipbb). The compounds of framework composition [Ce(HO)(SDB)] () and [Ce(hfipbb)] () were obtained by using a synthetic approach in acetonitrile that we recently established. Structure determination of was accomplished from 3D electron diffraction (3D ED) data, while could be refined against powder X-ray diffraction (PXRD) data using the crystal structure of an isostructural La-MOF as the starting model.

View Article and Find Full Text PDF

Adsorbents able to uptake large amounts of gases within a narrow range of pressure, , phase-change adsorbents, are emerging as highly interesting systems to achieve excellent gas separation performances with little energy input for regeneration. A recently discovered phase-change metal-organic framework (MOF) adsorbent is F4_MIL-140A(Ce), based on Ce and tetrafluoroterephthalate. This MOF displays a non-hysteretic step-shaped CO adsorption isotherm, reaching saturation in conditions of temperature and pressure compatible with real life application in post-combustion carbon capture, biogas upgrading and acetylene purification.

View Article and Find Full Text PDF

A novel 2D covalent organic polymer (COP), based on conjugated quinoid-oligothiophene (QOT) and tris(aminophenyl) benzene (TAPB) moieties, is designed and synthesized (TAPB-QOT COP). Some DFT calculations are made to clarify the equilibrium between different QOT isomers and how they could affect the COP formation. Once synthetized, the polymer has been thoroughly characterized by spectroscopic (, Raman, UV-vis), SSNMR and surface (, SEM, BET) techniques, showing a modest surface area (113 m g) and micropore volume (0.

View Article and Find Full Text PDF

Frustrated Lewis pairs (FLPs), discovered in the last few decades for homogeneous catalysts and in the last few years also for heterogeneous catalysts, are stimulating the scientific community's interest for their potential in small-molecule activation. Nevertheless, how an FLP activates stable molecules such as CO is still undefined. Through a careful spectroscopic study, we here report the formation of FLPs over a highly defective CeO sample prepared by microwave-assisted synthesis.

View Article and Find Full Text PDF

The reaction mechanism of dimethyl carbonate (DMC) production over ZrO from CO and CHOH is well-known, but the level of understanding has not improved in the last decade. Most commonly, the reaction mechanism has been explored in the gas phase, whilst DMC production occurs in the liquid phase. To overcome this contradiction, we exploited ATR-IR spectroscopy to study DMC formation over ZrO in the liquid phase.

View Article and Find Full Text PDF

Cu-exchanged zeolites are widely studied materials because of their importance in industrial energetic and environmental processes. Cu redox speciation lies at the center of many of these processes but is experimentally difficult to investigate in a quantitative manner with regular laboratory equipment. This work presents a novel technique for this purpose that exploits the selective adsorption of CO over accessible Cu(I) sites to quantify them.

View Article and Find Full Text PDF

A series of gas-phase reactants is used to treat a Cu-exchanged mordenite zeolite with the aim of studying the influence of the reaction environment on the formation of Cu pairs. The rearrangement of Cu ions to form multimeric sites as a function of their oxidation state was probed by X-ray absorption spectroscopy (XAS) and also by applying advanced analysis through wavelet transform, a method able to specifically locate Cu-Cu interactions also in the presence of overlapping contributions from other scattering paths. The nature of the Cu-oxo species formed upon oxidation was further crosschecked by DFT-assisted fitting of the EXAFS data and by resonant Raman spectroscopy.

View Article and Find Full Text PDF

The hierarchization of zeolites to overcome the major drawbacks related to molecular diffusion limitation in micropores is a popular concept in heterogeneous catalysis. Despite the constant increase of new synthesis strategies to produce such hierarchical systems, the deep knowledge of their structural arrangement and how the zeolitic lattice is organized in a multilevel porous system is often missing. This information is essential to design a structure, tuning the porosity and the distribution of easily accessible active sites, and successively controlling the catalytic properties.

View Article and Find Full Text PDF

Ti silicates, and in particular, titanium silicalite-1 (TS-1), are nowadays important catalysts for several partial oxidation reactions in the presence of aqueous H O as an oxidant. Despite the numerous studies dealing with this material, some fundamental aspects are still unclear. In particular, the structure and the catalytic role of defective Ti sites, other than perfect tetrahedral sites recognized as the main active species, has not been quantitatively discussed in the literature.

View Article and Find Full Text PDF

Host-guest interactions control the fundamental processes in porous materials for many applications such as gas storage and catalysis. The study of these processes, however, is not trivial, even if the material is crystalline. In particular, metal-organic frameworks (MOFs) represent a complex situation since guest molecules can interact with different parts of the organic linkers and the metal clusters and may alter the details of the pore structure and system properties.

View Article and Find Full Text PDF

The modular building principle of metal-organic frameworks (MOFs) presents an excellent platform to explore and establish structure-property relations that tie microscopic to macroscopic properties. Negative thermal expansion (NTE) is a common phenomenon in MOFs and is often ascribed to collective motions that can move through the structure at sufficiently low energies. Here, we show that the introduction of additional linkages in a parent framework, retrofitting, is an effective approach to access lattice dynamics experimentally, in turn providing researchers with a tool to alter the NTE behavior in MOFs.

View Article and Find Full Text PDF

This perspective article aims to underline how cutting-edge synchrotron radiation spectroscopies such as extended X-ray absorption spectroscopy (EXAFS), X-ray absorption near edge structure (XANES), high resolution fluorescence detected (HRFD) XANES, X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS) have played a key role in the structural and electronic characterization of Ti-based catalysts and photocatalysts, representing an important additional value to the outcomes of conventional laboratory spectroscopies (UV-Vis, IR, Raman, EPR, NMR etc.). Selected examples are taken from the authors research activity in the last two decades, covering both band-gap and shape engineered TiO materials and microporous titanosilicates (ETS-10, TS-1 and Ti-AlPO-5).

View Article and Find Full Text PDF

Substituting metals for either aluminum or phosphorus in crystalline, microporous aluminophosphates creates Brønsted acid sites, which are well known to catalyze several key reactions, including the methanol to hydrocarbons (MTH) reaction. In this work, we synthesized a series of metal-substituted aluminophosphates with AFI topology that differed primarily in their acid strength and that spanned a predicted range from high Brønsted acidity (H-MgAlPO-5, H-CoAlPO-5, and H-ZnAlPO-5) to medium acidity (H-SAPO-5) and low acidity (H-TiAlPO-5 and H-ZrAlPO-5). The synthesis was aimed to produce materials with homogenous properties (e.

View Article and Find Full Text PDF

Cooperative binding, whereby an initial binding event facilitates the uptake of additional substrate molecules, is common in biological systems such as haemoglobin. It was recently shown that porous solids that exhibit cooperative binding have substantial energetic benefits over traditional adsorbents, but few guidelines currently exist for the design of such materials. In principle, metal-organic frameworks that contain coordinatively unsaturated metal centres could act as both selective and cooperative adsorbents if guest binding at one site were to trigger an electronic transformation that subsequently altered the binding properties at neighbouring metal sites.

View Article and Find Full Text PDF

The functional properties of a new composite material having water vapor getter properties have been investigated by a large arsenal of characterization techniques. The composite system is originated by combining two constituents having very different chemical natures, a magnesium perchlorate (Mg(ClO)) salt and a polymeric acrylic matrix. In particular, Fourier transform infrared (FT-IR) and Raman spectroscopy have been fundamental to understand the type of interactions between the salt and the matrix in different hydration conditions.

View Article and Find Full Text PDF

Although a widely used and important industrial gas, ammonia (NH) is also highly toxic and presents a substantial health and environmental hazard. The development of new materials for the effective capture and removal of ammonia is thus of significant interest. The capture of ammonia at ppm-level concentrations relies on strong interactions between the adsorbent and the gas, as demonstrated in a number of zeolites and metal-organic frameworks with Lewis acidic open metal sites.

View Article and Find Full Text PDF

Hybrid organic-inorganic SBA-15 silicas functionalized with increasing amounts of amino groups were studied in this work aiming to evaluate the effects of their physico-chemical properties on CO capture ability. Three different amino-silane species were used: 3-aminopropyltriethoxysilane (APTS), 3-(2-aminoethyl)aminopropyltrimethoxysilane (EAPTS) and 3-[2-(2-aminoethyl)aminoethyl] aminopropyltrimethoxysilane (PAPTS). More specifically, samples were prepared by using two methods, following a post-synthesis grafting procedure and a one-pot preparation method.

View Article and Find Full Text PDF

Ti-zeolites are interesting materials because of their key role in partial oxidation reactions, as well as under a fundamental point of view being regarded as single site catalysts. Both experimental and computational approaches have been widely applied to the characterization of their active sites, reaching a level of knowledge unmatchable by most other important catalysts. However, several questions are still open, being a proper energetic simulation of the adsorption process of simple molecules, fitting with the experimental outcomes, still missing.

View Article and Find Full Text PDF

The process of carbon capture and sequestration has been proposed as a method of mitigating the build-up of greenhouse gases in the atmosphere. If implemented, the cost of electricity generated by a fossil fuel-burning power plant would rise substantially, owing to the expense of removing CO2 from the effluent stream. There is therefore an urgent need for more efficient gas separation technologies, such as those potentially offered by advanced solid adsorbents.

View Article and Find Full Text PDF

Six metal-organic frameworks of the M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Zn; dobdc(4-) = 2,5-dioxido-1,4-benzenedicarboxylate) structure type are demonstrated to bind carbon monoxide reversibly and at high capacity. Infrared spectra indicate that, upon coordination of CO to the divalent metal cations lining the pores within these frameworks, the C-O stretching frequency is blue-shifted, consistent with nonclassical metal-CO interactions. Structure determinations reveal M-CO distances ranging from 2.

View Article and Find Full Text PDF

Enzymatic haem and non-haem high-valent iron-oxo species are known to activate strong C-H bonds, yet duplicating this reactivity in a synthetic system remains a formidable challenge. Although instability of the terminal iron-oxo moiety is perhaps the foremost obstacle, steric and electronic factors also limit the activity of previously reported mononuclear iron(IV)-oxo compounds. In particular, although nature's non-haem iron(IV)-oxo compounds possess high-spin S = 2 ground states, this electronic configuration has proved difficult to achieve in a molecular species.

View Article and Find Full Text PDF

In situ FTIR spectroscopy was employed to investigate some aspects of the ambient temperature (actually, IR-beam temperature) adsorption of acetone on various pure and sulfate-doped zirconia specimens. Acetone uptake yields, on all examined systems and to a variable extent, different types of specific molecular adsorption, depending on the kind/population of available surface sites: relatively weak H-bonding interaction(s) with surface hydroxyls, medium-strong coordinative interaction with Lewis acidic sites, and strong H-bonding interaction with Brønsted acidic centres. Moreover acetone, readily and abundantly adsorbed in molecular form, is able to undergo the aldol condensation reaction (yielding, as the main reaction product, adsorbed mesityl oxide) only if the adsorbing material possesses some specific surface features.

View Article and Find Full Text PDF

This contribution reports about an in situ FT-IR investigation and the catalytic reactivity of Mg/Me(3+) mixed oxides (Me = Cr, Fe, or Al; Mg/Me = 2, atomic ratio) in the gas-phase methylation of phenol with methanol. It is the second of two papers concerning the mentioned systems, and its purpose is twofold: to confute the classic and not accurate theory concerning the reaction mechanism, and to propose a novel interpretation based on the combined use of catalytic tests and in situ molecular spectroscopy. Results here reported highlight that: (i) the reaction mechanism in phenol methylation, when catalysed by basic systems, is not a classical electrophylic substitution, as generally reported in the literature, but proceeds through the formation of formaldehyde as an intermediate, and (ii) the catalytic behaviour in respect to both methanol and phenol reactants is strictly dependent on catalyst features.

View Article and Find Full Text PDF

Pure and modified silica materials were synthesised by a sol-gel process and used as carrier for the controlled release of ibuprofen, selected as model drug. A one-step synthesis was optimised for the preparation of various silica-drug composites by using tetraethoxysilane and 3-aminopropyltriethoxysilane as precursors at different molar ratios. The presence of aminopropyl groups on the silica surface influences the drug-delivery rate leading to a high degree the desorption process controlled.

View Article and Find Full Text PDF