Publications by authors named "Cristy L Gelling"

In Saccharomyces cerevisiae, mitochondrial morphology changes when cells are shifted between nonfermentative and fermentative carbon sources. Here, we show that cells of S. cerevisiae grown in different glucose concentrations display different mitochondrial morphologies.

View Article and Find Full Text PDF

Up to 1 in 3000 individuals in the United States have α-1 antitrypsin deficiency, and the most common cause of this disease is homozygosity for the antitrypsin-Z variant (ATZ). ATZ is inefficiently secreted, resulting in protein deficiency in the lungs and toxic polymer accumulation in the liver. However, only a subset of patients suffer from liver disease, suggesting that genetic factors predispose individuals to liver disease.

View Article and Find Full Text PDF

The most frequent cause of α(1)-antitrypsin (here referred to as AT) deficiency is homozygosity for the AT-Z allele, which encodes AT-Z. Such individuals are at increased risk for liver disease due to the accumulation of aggregation-prone AT-Z in the endoplasmic reticulum of hepatocytes. However, the penetrance and severity of liver dysfunction in AT deficiency is variable, indicating that unknown genetic and environmental factors contribute to its occurrence.

View Article and Find Full Text PDF

The transcriptional activator Gcn4p is considered the master regulator of amino acid metabolism in Saccharomyces cerevisiae and is required for the transcriptional response to amino acid starvation. Here it is shown that Gcn4p plays a previously undescribed role in regulating adaptation to anaerobic growth. A gcn4 mutant exhibited a highly extended lag phase after a shift to anaerobiosis that was the result of l-serine depletion.

View Article and Find Full Text PDF

Glycine specifically induces genes encoding subunits of the glycine decarboxylase complex (GCV1, GCV2, and GCV3), and this is mediated by a fall in cytoplasmic levels of 5,10-methylenetetrahydrofolate caused by inhibition of cytoplasmic serine hydroxymethyltransferase. Here it is shown that this control system extends to genes for other enzymes of one-carbon metabolism and de novo purine biosynthesis. Northern analysis of the response to glycine demonstrated that the induction of the GCV genes and the induction of other amino acid metabolism genes are temporally distinct.

View Article and Find Full Text PDF