Determination of protein concentration in vaccines containing aluminum salt adjuvant typically necessitates desorption of the protein prior to analysis. Here we describe a method based on the intrinsic fluorescence of tyrosine and tryptophan that requires no desorption of proteins. Adjuvanted formulations of three model Bordetella pertussis antigens were excited at 280 nm and their emission spectra collected from 290 to 400 nm.
View Article and Find Full Text PDFBackground: Vaccine formulations may contain visible and/or subvisible particles, which can vary in both size and morphology. Extrinsic particles, which are particles not part of the product such as foreign contaminants, are generally considered undesirable and should be eliminated or controlled in injectable products. However, biological products, in particular vaccines, may also contain particles that are inherent to the product.
View Article and Find Full Text PDFThe pneumococcal histidine triad protein D (PhtD) is believed to play a central role in pneumococcal metal ion homeostasis and has been proposed as a promising vaccine candidate against pneumococcal disease. To investigate for potential stabilizers, a panel of physiologically relevant metals was screened using the thermal shift assay and it was found that only Zn and Mn were able to increase PhtD melting temperature. Differential scanning calorimetry analysis revealed a sequential unfolding of PhtD and the presence of at least 3 independent folding domains that can be stabilized by Zn and Mn.
View Article and Find Full Text PDFA tuberculosis (TB) vaccine consisting of a recombinant fusion protein (H4) and a novel TLR9 adjuvant (IC31) is in clinical development. To better understand the H4-IC31 ratio, we measured the binding capacity of IC31 for H4 protein and immunized mice with formulations that contained limiting to excess ratios of IC31 to H4. An immunomodulated H4-specific IFNγ response was only observed when IC31 was present in excess of H4.
View Article and Find Full Text PDFWe have investigated the effects of site specific "hinge" polyethylene glycol conjugation (PEGylation) on thermal, pH, and colloidal stability of a monoclonal antibody antigen-binding fragment (Fab') using a variety of biophysical techniques. The results obtained by circular dichroism (CD), ultraviolet (UV) absorbance, and fluorescence spectroscopy suggested that the physical stability of the Fab' is maximized at pH 6-7 with no apparent differences due to PEGylation. Temperature-induced aggregation experiments revealed that PEGylation was able to increase the transition temperature, as well as prevent the formation of visible and subvisible aggregates.
View Article and Find Full Text PDF