Malignant gliomas constitute one of the most significant areas of unmet medical need, owing to the invariable failure of surgical eradication and their marked molecular heterogeneity. Accumulating evidence has revealed a critical contribution by the Polycomb axis of epigenetic repression. However, a coherent understanding of the regulatory networks affected by Polycomb during gliomagenesis is still lacking.
View Article and Find Full Text PDFThis study aims at evaluating the combination of the tumor-necrosis-factor-related apoptosis-inducing ligand (TRAIL)-receptor 2 (TRAIL-R2)-specific antibody Drozitumab and the Smac mimetic BV6 in preclinical glioblastoma models. To this end, the effect of BV6 and/or Drozitumab on apoptosis induction and signaling pathways was analyzed in glioblastoma cell lines, primary glioblastoma cultures and glioblastoma stem-like cells. Here, we report that BV6 and Drozitumab synergistically induce apoptosis and reduce colony formation in several glioblastoma cell lines (combination index<0.
View Article and Find Full Text PDFCell Death Differ
September 2013
Obatoclax (GX15-070), a small-molecule inhibitor of antiapoptotic Bcl-2 proteins, has been reported to trigger cell death via autophagy. However, the underlying molecular mechanisms have remained elusive. Here, we identify GX15-070-stimulated assembly of the necrosome on autophagosomal membranes as a key event that connects GX15-070-stimulated autophagy to necroptosis.
View Article and Find Full Text PDFTo search for novel strategies to enhance the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis pathways in glioblastoma, we used the B-cell lymphoma 2/Bcl2-like 2-inhibitor ABT-737. Here we report that ABT-737 and TRAIL cooperate to induce apoptosis in several glioblastoma cell lines in a highly synergistic manner (combination index <0.1).
View Article and Find Full Text PDFOn the basis of our previous identification of aberrant phosphatidylinositol-3-kinase (PI3K)/Akt signaling as a novel poor prognostic factor in neuroblastoma, we evaluated the dual PI3K/mTOR inhibitor BEZ235 in the present study. Here, BEZ235 acts in concert with the lysosomotropic agent chloroquine (CQ) to trigger apoptosis in neuroblastoma cells in a synergistic manner, as calculated by combination index (CI < 0.5).
View Article and Find Full Text PDFInhibitor of apoptosis (IAP) proteins represent promising therapeutic targets due to their high expression in many cancers. Here, we report that small-molecule IAP inhibitors at subtoxic concentrations cooperate with monoclonal antibodies against TRAIL receptor 1 (Mapatumumab) or TRAIL-R2 (Lexatumumab) to induce apoptosis in neuroblastoma cells in a highly synergistic manner (combination index <0.1).
View Article and Find Full Text PDFInhibitor of apoptosis (IAP) proteins are expressed at high levels in many cancers and therefore represent attractive targets for therapeutic intervention. Here, we report for the first time that the second mitochondria-derived activator of caspases (Smac) mimetic BV6 sensitizes glioblastoma cells toward Temozolomide (TMZ), the first-line chemotherapeutic agent in the treatment of glioblastoma. BV6 and TMZ synergistically reduce cell viability and trigger apoptosis in glioblastoma cells (combination index <0.
View Article and Find Full Text PDFIn this study, we report a novel mechanism of action for a cytotoxic derivative of betulinic acid (BA). B10 is a semi-synthetic glycosylated derivative of BA selected for its enhanced cytotoxic activity. Interestingly, although B10 induces apoptosis, caspase-3 downregulation incompletely prevents B10-induced cell death, Bcl-2 overexpression fails to protect cells and DNA fragmentation rates do not reflect cell death rates in contrast to cytoplasmic membrane permeabilization.
View Article and Find Full Text PDFGlioblastoma is the most common primary brain tumor with a very poor prognosis, calling for novel treatment strategies. Here, we provide first evidence that histone deacetylase inhibitors (HDACI) prime glioblastoma cells for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) -induced apoptosis at least in part by c-myc-mediated downregulation of cellular FLICE-inhibitory protein (cFLIP). Pretreatment with distinct HDACI (MS275, suberoylanilide hydroxamic acid, valproic acid) significantly enhances TRAIL-induced apoptosis in several glioblastoma cell lines.
View Article and Find Full Text PDFDefects in apoptosis contribute to treatment resistance and poor outcome of pancreatic cancer, calling for novel therapeutic strategies. Here, we provide the first evidence that nuclear factor (NF) κB is required for Smac mimetic-mediated sensitization of pancreatic carcinoma cells for gemcitabine-induced apoptosis. The Smac mimetic BV6 cooperates with gemcitabine to reduce cell viability and to induce apoptosis.
View Article and Find Full Text PDFEvasion of apoptosis may contribute to poor treatment response in pediatric acute lymphoblastic leukemia (ALL), calling for novel treatment strategies. Here, we report that inhibitors of apoptosis (IAPs) at subtoxic concentrations cooperate with various anticancer drugs (that is, AraC, Gemcitabine, Cyclophosphamide, Doxorubicin, Etoposide, Vincristine and Taxol) to induce apoptosis in ALL cells in a synergistic manner as calculated by combination index and to reduce long-term clonogenic survival. Importantly, we identify RIP1 as a critical regulator of this synergism of IAP inhibitors and AraC that mediates the formation of a RIP1/FADD/caspase-8 complex via an autocrine/paracrine loop of tumor necrosis factor-α (TNFα).
View Article and Find Full Text PDFSearching for new strategies to bypass apoptosis resistance, we investigated the potential of the Smac mimetic BV6 in Jurkat leukemia cells deficient in key molecules of the death receptor pathway. Here, we demonstrate for the first time that Smac mimetic primes apoptosis-resistant, FADD- or caspase-8-deficient leukemia cells for TNFα-induced necroptosis in a synergistic manner. In contrast to TNFα, Smac mimetic significantly enhances CD95-induced apoptosis in wild-type but not in FADD-deficient cells.
View Article and Find Full Text PDFEvasion of apoptosis contributes to radioresistance of glioblastoma, calling for novel strategies to overcome apoptosis resistance. In this study, we investigated the potential of the small molecule Smac mimetic BV6 to modulate radiosensitivity of glioblastoma cells. Here, we identify a novel proapoptotic function of NF-κB in γ-irradiation-induced apoptosis of glioblastoma cells by showing, for the first time, that NF-κB is critically required for Smac mimetic-mediated radiosensitization.
View Article and Find Full Text PDFIt is now widely accepted that dietary phytochemicals inhibit cancer progression and enhance the effects of conventional chemotherapy. In this report, we comparatively studied the cellular and molecular aspects of apoptosis induction by the methanolic extract of Baneh fruit skin in comparison to Doxorubicin (Dox), a well-known anticancer drug, in human breast cancer T47D cells. The MTT assay was used to determine the antiproliferative effects.
View Article and Find Full Text PDFGlioblastoma is the most common primary brain tumor with a dismal prognosis, highlighting the need for novel treatment strategies. Here, we provide the first evidence that the histone deacetylase inhibitor, MS275, sensitizes glioblastoma cells for chemotherapy-induced apoptosis. Pretreatment of glioblastoma cells with MS275 causes acetylation of histone H3 protein and significantly enhances doxorubicin-induced apoptosis.
View Article and Find Full Text PDFDespite aggressive therapies, the prognosis of children with high-risk medulloblastoma is still poor, thus underscoring the need to develop novel treatment strategies. Here, we report that histone deacetylase inhibitors (HDACI), that is, MS-275, valproic acid or SAHA, provide a novel strategy for sensitization of medulloblastoma to DNA-damaging drugs such as Doxorubicin, VP16 and Cisplatin by promoting p53-dependent, mitochondrial apoptosis. Mechanistic studies reveal that single-agent treatment with MS-275 causes acetylation of the non-histone protein Ku70, an event reported to release Bax from Ku70, whereas DNA-damaging drugs trigger p53 acetylation and accumulation.
View Article and Find Full Text PDFPurpose: Searching for novel approaches to sensitize glioblastoma for cell death, we investigated the proteasome inhibitor bortezomib.
Experimental Design: The effect of bortezomib on tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis signaling pathways was analyzed in glioblastoma cell lines, primary glioblastoma cultures, and in an in vivo model.
Results: Bortezomib and TRAIL synergistically trigger cell death and reduce colony formation of glioblastoma cells (combination index < 0.
We have previously shown that oxidative stress induced by an apoptogenic dose of H(2)O(2) leads to a temporary block of glycolytic flux via inactivation of the glycolytic key enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in U937 cells. This corresponds to the activation of a cell defense pathway that is triggered to repair stress-induced damage and to rescue cells from death. Here, we show that subapoptogenic doses of H(2)O(2) affect GAPDH activity in an opposite way, leading to strong hyperactivation.
View Article and Find Full Text PDFWe have shown that melatonin exerts a prooxidant activity in U937 cells, a tumor human promonocytic cell line. (1) Here we show that melatonin induces a strong canonical activation of NF-kappaB, inducing IkappaBalpha degradation and the consequential nuclear translocation of p50/p65 subunits. The timing of NF-kappaB activation overlaps with the timing of reactive oxygen species (ROS) production due to melatonin.
View Article and Find Full Text PDFThe deregulated activation of NF-kappaB is associated with cancer development and inflammatory diseases. With an aim to find new NF-kappaB inhibitors, we purified and characterized compounds from extracts of the Fijian sponge Rhabdastrella globostellata, the crinoid Comanthus parvicirrus, the soft corals Sarcophyton sp. nov.
View Article and Find Full Text PDFNaturally occurring organic sulfur compounds (OSCs), such as linear allylsulfides from Allium species, are attracting attention in cancer research, since several OSCs were shown to act beneficially both in chemoprevention and in chemotherapy, while hardly exerting any harmful side effects. Hence, we investigated the possible role of different OSCs in the treatment of leukemia. Thereby, we found that the compounds tested in this study induced apoptosis in U937 cells, with an efficiency depending on the number of sulfides, and selected the most promising candidate, diallyltetrasulfide (Al2S4), for detailed mechanistic studies.
View Article and Find Full Text PDFThe hematopoietic transcription factor GATA-1 regulates the expression of several genes associated with differentiation of erythroid cells. We show here the inhibitory effect of tumor necrosis factor alpha (TNFalpha), a proinflammatory cytokine, on hemoglobinization and erythroid transcription factor GATA-1 expression in erythroleukemia (HEL) as well as in chronic myelogenous leukemia (K562) cells, which were induced to differentiate towards the erythroid lineage after aclacinomycin (Acla), doxorubicin (Dox) or hemin (HM) treatment. As a result, we observed i) a decreased expression of Friend of GATA-1 (FOG-1), an essential cofactor of GATA-1 transcription factor, ii) a downregulation of GATA-1 by proteasomal degradation and iii) a reduced acetylation level of GATA-1 in HM-induced K562 cells after TNF treatment.
View Article and Find Full Text PDFGamma-glutamyltransferase (GGT) cleaves the gamma-glutamyl moiety of glutathione (GSH), an endogenous antioxidant, and is involved in mercapturic acid metabolism and in cancer drug resistance when overexpressed. Moreover, GGT converts leukotriene (LT) C4 into LTD4 implicated in various inflammatory pathologies. So far the effect of inflammatory stimuli on regulation of GGT expression and activity remained to be addressed.
View Article and Find Full Text PDFThe proinflammatory cytokine tumor necrosis factor alpha (TNFalpha) has been linked to inflammation- and cancer-related anemia, which reduces both quality of life and prognosis of patients. The aim of this study was to reveal molecular mechanisms linked to the inhibition of erythroid differentiation by TNFalpha. In this study, we showed that the inhibition of erythropoietin (Epo)-mediated differentiation by TNFalpha lead to a downregulation of hemoglobin synthesis and was correlated to a modulation of key erythroid transcription factors.
View Article and Find Full Text PDF