Carnitine acyltransferases catalyze the reversible transfer of acyl groups from acyl-coenzyme A esters to l-carnitine, forming acyl-carnitine esters that may be transported across cell membranes. l-Carnitine is a wáter-soluble compound that humans may obtain both by food ingestion and endogenous synthesis from trimethyl-lysine. Most l-carnitine is intracellular, being present predominantly in liver, skeletal muscle, heart and kidney.
View Article and Find Full Text PDFBranched-chain amino acids (leucine, isoleucine and valine) are structurally related to branched-chain fatty acids. Leucine is 2-amino-4-methyl-pentanoic acid, isoleucine is 2-amino-3-methyl-pentanoic acid, and valine is 2-amino-3-methyl-butanoic acid. Similar to fatty acid oxidation, leucine and isoleucine produce acetyl-coA.
View Article and Find Full Text PDFInformation about normal hepatic glucose metabolism may help to understand pathogenic mechanisms underlying obesity and diabetes mellitus. In addition, liver glucose metabolism is involved in glycosylation reactions and connected with fatty acid metabolism. The liver receives dietary carbohydrates directly from the intestine via the portal vein.
View Article and Find Full Text PDFIn the human body, glycogen is a branched polymer of glucose stored mainly in the liver and the skeletal muscle that supplies glucose to the blood stream during fasting periods and to the muscle cells during muscle contraction. Glycogen has been identified in other tissues such as brain, heart, kidney, adipose tissue, and erythrocytes, but glycogen function in these tissues is mostly unknown. Glycogen synthesis requires a series of reactions that include glucose entrance into the cell through transporters, phosphorylation of glucose to glucose 6-phosphate, isomerization to glucose 1-phosphate, and formation of uridine 5'-diphosphate-glucose, which is the direct glucose donor for glycogen synthesis.
View Article and Find Full Text PDFCarbonic anhydrases are a group of isoenzymes that catalyze the reversible conversion of carbon dioxide into bicarbonate. They participate in a constellation of physiological processes in humans, including respiration, bone metabolism, and the formation of body fluids, including urine, bile, pancreatic juice, gastric secretion, saliva, aqueous humor, cerebrospinal fluid, and sweat. In addition, carbonic anhydrase may provide carbon dioxide/bicarbonate to carboxylation reactions that incorporate carbon dioxide to substrates.
View Article and Find Full Text PDFHuman plasma is an aqueous solution that has to abide by chemical rules such as the principle of electrical neutrality and the constancy of the ionic product for water. These rules define the acid-base balance in the human body. According to the electroneutrality principle, plasma has to be electrically neutral and the sum of its cations equals the sum of its anions.
View Article and Find Full Text PDF