Publications by authors named "Cristobal Blanco-Acevedo"

Background: Intracerebral hemorrhages (ICHs) are prevalent, with high morbidity and mortality. We analyzed whether decompressive craniectomy (DC) without evacuation of the acute intraparenchymal hematoma could produce better functional outcomes than treatment with evacuation.

Methods: Patients with acute ICH treated with DC without clot evacuation, or evacuation with or without associated craniectomy were included.

View Article and Find Full Text PDF

Background: Glioblastoma is one of the most devastating and incurable cancers due to its aggressive behaviour and lack of available therapies, being its overall-survival from diagnosis ∼14-months. Thus, identification of new therapeutic tools is urgently needed. Interestingly, metabolism-related drugs (e.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most malignant and lethal brain tumor. Current standard treatment consists of surgery followed by radiotherapy/chemotherapy; however, this is only a palliative approach with a mean post-operative survival of scarcely ~12-15 months. Thus, the identification of novel therapeutic targets to treat this devastating pathology is urgently needed.

View Article and Find Full Text PDF

Background: Glioblastoma is one of the most devastating cancer worldwide based on its locally aggressive behavior and because it cannot be cured by current therapies. Defects in alternative splicing process are frequent in cancer. Recently, we demonstrated that dysregulation of the spliceosome is directly associated with glioma development, progression, and aggressiveness.

View Article and Find Full Text PDF

Glioblastomas remain the deadliest brain tumour, with a dismal ∼12-16-month survival from diagnosis. Therefore, identification of new diagnostic, prognostic and therapeutic tools to tackle glioblastomas is urgently needed. Emerging evidence indicates that the cellular machinery controlling the splicing process (spliceosome) is altered in tumours, leading to oncogenic splicing events associated with tumour progression and aggressiveness.

View Article and Find Full Text PDF

Introduction: Pituitary neuroendocrine tumors (PitNETs), the most abundant of all intracranial tumors, entail severe comorbidities. First-line therapy is transsphenoidal surgery, but subsequent pharmacological therapy is often required. Unfortunately, many patients are/become unresponsive to available drugs (somatostatin analogues [SSAs]/dopamine agonists), underscoring the need for new therapies.

View Article and Find Full Text PDF

Purpose: Somatostatin analogues (SSA) are efficacious and safe treatments for a variety of neuroendocrine tumors, especially pituitary neuroendocrine tumors (PitNET). Their therapeutic effects are mainly mediated by somatostatin receptors SST and SST. Most SSAs, such as octreotide/lanreotide/pasireotide, are either nonselective or activate mainly SST.

View Article and Find Full Text PDF

Background: Pituitary neuroendocrine tumors (PitNETs) represent approximately 15% of all intracranial tumors and usually are associated with severe comorbidities. Unfortunately, a relevant number of patients do not respond to currently available pharmacological treatments, that is, somatostatin analogs (SSAs) or dopamine-agonists (DA). Thus, novel, chimeric somatostatin/dopamine compounds (dopastatins) that could improve medical treatment of PitNETs have been designed.

View Article and Find Full Text PDF

Context: Pituitary neuroendocrine tumors (PitNETs) are a commonly underestimated pathology in terms of incidence and associated morbimortality. Currently, an appreciable subset of patients are resistant or poorly responsive to the main current medical treatments [i.e.

View Article and Find Full Text PDF

Acromegaly is a rare but severe disease, originated in 95% of cases by a growth hormone-secreting adenoma (somatotropinoma) in the pituitary. Magnetic resonance imaging (MRI) is a non-invasive technique used for the diagnosis and prognosis of pituitary tumours. The aim of this study was to determine whether the use of T2-weighted signal intensity at MRI could help to improve the characterisation of somatotropinomas, by analysing its relationship with clinical/molecular features.

View Article and Find Full Text PDF