Publications by authors named "Cristo Jurado-Verdu"

We present a design approach for a long-distance optical camera communication (OCC) system using side-emitting fibers as distributed transmitters. We demonstrate our approach feasibility by increasing the transmission distance by two orders up to 40 m compared to previous works. Furthermore, we explore the effect of the light-emitting diode (LED) modulation frequency and rolling shutter camera exposure time on inter-symbol interference and its effective mitigation.

View Article and Find Full Text PDF

Symmetries in system modeling can be exploited to obtain analytical results on the system behavior and to speed up computations using the symmetric model. This work explores the use of symmetries in radiant surfaces for calculating the induced irradiance distributions by developing a general mathematical expression. The obtained model is applied to flat, cylindrical, and spherical sources to obtain explicit expressions.

View Article and Find Full Text PDF

In rolling shutter (RS)-based optical camera communication (OCC) links, selecting the appropriate camera's exposure time is critical, as it limits the reception bandwidth. In long exposures, the pixels accumulate over time the incoming irradiance of several consecutive symbols. As a result, a harmful intersymbol interference corrupts the received signal.

View Article and Find Full Text PDF

In rolling shutter-based optical camera communication (OCC), the camera's exposure time limits the achievable reception bandwidth. In long-exposure settings, the image sensor pixels average the incident received power, producing inter-symbol interference (ISI), which is perceived in the images as a spatial mixture of the symbol bands. Hence, the shortest possible exposure configuration should be selected to alleviate ISI.

View Article and Find Full Text PDF

Optical wireless communications in outdoor scenarios are challenged by uncontrollable atmospheric conditions that impair the channel quality. In this paper, different optical camera communications (OCC) equipment are experimentally studied in the laboratory and the field, and a sub-pixel architecture is raised as a potential solution for outdoor wireless sensor networks (WSN) applications, considering its achievable data throughput, the spatial division of sources, and the ability of cameras to overcome the attenuation caused by different atmospheric conditions such as rain, turbulence and the presence of aerosols. Sub-pixel OCC shows particularly adequate capabilities for some of the WSN applications presented, also in terms of cost-effectiveness and scalability.

View Article and Find Full Text PDF

Visible light communications (VLC) technology is emerging as a candidate to meet the demand for interconnected devices' communications. However, the costs of incorporating specific hardware into end-user devices slow down its market entry. Optical camera communication (OCC) technology paves the way by reusing cameras as receivers.

View Article and Find Full Text PDF

Optical Camera Communication (OCC) systems have a potential application in microalgae production plants. In this work, a proof-of-concept prototype consisting of an artificial lighting photobioreactor is proposed. This reactor optimises the culture's photosynthetic efficiency while transmitting on-off keying signals to a rolling-shutter camera.

View Article and Find Full Text PDF

In color-multiplexed optical camera communications (OCC) systems, data acquisition is restricted by the image processing algorithm capability for fast source recognition, region-of-interest (ROI) detection and tracking, packet synchronization within ROI, estimation of inter-channel interference and threshold computation. In this work, a novel modulation scheme for a practical RGB-LED-based OCC system is presented. The four above-described tasks are held simultaneously.

View Article and Find Full Text PDF