Publications by authors named "Cristina d'Abramo"

APOE is a major genetic factor in late-onset Alzheimer's disease (LOAD), with APOE4 increasing risk, APOE3 acting as neutral, and APOE2 offering protection. APOE also plays key role in lipid metabolism, affecting both peripheral and central systems, particularly in lipoprotein metabolism in triglyceride and cholesterol regulation. APOE2 is linked to Hyperlipoproteinemia type III (HLP), characterized by mixed hypercholesterolemia and hypertriglyceridemia due to impaired binding to Low-Density Lipoproteins receptors.

View Article and Find Full Text PDF

Background: Cardiac arrest (CA) can lead to neuronal degeneration and death through various pathways, including oxidative, inflammatory, and metabolic stress. However, current neuroprotective drug therapies will typically target only one of these pathways, and most single drug attempts to correct the multiple dysregulated metabolic pathways elicited following cardiac arrest have failed to demonstrate clear benefit. Many scientists have opined on the need for novel, multidimensional approaches to the multiple metabolic disturbances after cardiac arrest.

View Article and Find Full Text PDF

About 2% of Alzheimer's disease (AD) cases have early onset (FAD) and are caused by mutations in either Presenilins (PSEN1/2) or amyloid-β precursor protein (APP). PSEN1/2 catalyze production of Aβ peptides of different length from APP. Aβ peptides are the major components of amyloid plaques, a pathological lesion that characterizes AD.

View Article and Find Full Text PDF

Classical cadherins, including vascular endothelial (VE)-cadherin, are targeted by matrix metalloproteinases (MMPs) and γ-secretase during adherens junction (AJ) disassembly, a mechanism that might have relevance for endothelial cell (EC) integrity and vascular homeostasis. Here, we show that oxidative stress triggered by HO exposure induced efficient VE-cadherin proteolysis by MMPs and γ-secretase in human umbilical endothelial cells (HUVECs). The cytoplasmic domain of VE-cadherin produced by γ-secretase, VE-Cad/CTF2-a fragment that has eluded identification so far-could readily be detected after HO treatment.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common type of dementia, affecting more than 5 million Americans, with steadily increasing mortality and incredible socio-economic burden. Not only have therapeutic efforts so far failed to reach significant efficacy, but the real pathogenesis of the disease is still obscure. The current theories are based on pathological findings of amyloid plaques and tau neurofibrillary tangles that accumulate in the brain parenchyma of affected patients.

View Article and Find Full Text PDF

With evidence supporting the prion-like spreading of extracellular tau as a mechanism for the initiation and progression of Alzheimer's disease (AD), immunotherapy has emerged as a potential disease-modifying strategy to target tau. Many studies have proven effective to clear pathological tau species in animal models of AD, and several clinical trials using conventional immunotherapy with anti-tau native antibodies are currently active. We have previously generated a vectorized scFv derived from the conformation-dependent anti-tau antibody MC1, scFvMC1, and demonstrated that its intracranial injection was able to prevent tau pathology in adult tau mice.

View Article and Find Full Text PDF
Article Synopsis
  • Retrotransposons make up a huge part (40%) of mammal genomes, with endogenous retroviruses (ERVs) accounting for 8-10% in humans and mice, impacting cognitive functions.
  • In this study, researchers used two models of ERV activation in mice to assess learning and memory through various tests, finding a link between ERV activation and memory impairment in both models.
  • The findings suggest that activating the MAVS pathway might protect against memory decline, highlighting ERV activation as a potential target for treatments related to dementia and neuropsychiatric disorders.
View Article and Find Full Text PDF

Tau, the main component of the neurofibrillary tangles (NFTs), is an attractive target for immunotherapy in Alzheimer's disease (AD) and other tauopathies. MC1/Alz50 are currently the only antibodies targeting a disease-specific conformational modification of tau. Passive immunization experiments using intra-peritoneal injections have previously shown that MC1 is effective at reducing tau pathology in the forebrain of tau transgenic JNPL3 mice.

View Article and Find Full Text PDF

In the attempt to elucidate if the "peripheral sink hypothesis" could be a potential mechanism of action for tau removal in passive immunotherapy experiments, we have examined tau levels in serum of chronically injected JNPL3 and Tg4510 transgenic animals. Measurement of tau in serum of mice treated with tau antibodies is challenging because of the antibody interference in sandwich enzyme-linked immunosorbent assays. To address this issue, we have developed a heat-treatment protocol at acidic pH to remove interfering molecules from serum, with excellent recovery of tau.

View Article and Find Full Text PDF

Recent work from our lab and few others have strongly suggested that immunotherapy could be an effective means of preventing the development of tau accumulation in JNPL3 transgenic mice, carrying the human P301L mutation. The aim of this study was to test the efficacy of a variety of specific tau monoclonal antibodies in JNPL3. Starting at 3 months of age, mice were treated for 4 months with weekly intraperitoneal injections of saline or purified tau monoclonal antibodies (10 mg/Kg) different in specificity for pathological tau: CP13 (pSer202), RZ3 (pThr231) and PG5 (pSer409).

View Article and Find Full Text PDF

The endocannabinoid CB2 receptor system has been implicated in the neuropathology of Alzheimer's disease (AD). In order to investigate the impact of the CB2 receptor system on AD pathology, a colony of mice with a deleted CB2 receptor gene, CNR2, was established on a transgenic human mutant APP background for pathological comparison with CB2 receptor-sufficient transgenic mice. J20 APP (PDGFB-APPSwInd) mice were bred over two generations with CNR2(-/-) (Cnr2(tm1Dgen)/J) mice to produce a colony of J20 CNR2(+/+) and J20 CNR2(-/-) mice.

View Article and Find Full Text PDF

The endocannabinoid CB₂ receptor system has been implicated in the neuropathology of Alzheimer's disease (AD). In order to investigate the impact of the CB₂ receptor system on AD pathology, a colony of mice with a deleted CB₂ receptor gene, CNR2, was established on a transgenic human mutant APP background for pathological comparison with CB₂ receptor-sufficient transgenic mice. J20 APP (PDGFB-APPSwInd) mice were bred over two generations with CNR2⁻/⁻ (Cnr2(tm1Dgen)/J) mice to produce a colony of J20 CNR2⁺/⁺ and J20 CNR2⁻/⁻ mice.

View Article and Find Full Text PDF

The use of antibodies to treat neurodegenerative diseases has undergone rapid development in the past decade. To date, immunotherapeutic approaches to Alzheimer's disease have mostly targeted amyloid beta as it is a secreted protein that can be found in plasma and CSF and is consequently accessible to circulating antibodies. Few recent publications have suggested the utility of treatment of tau pathology with monoclonal antibodies to tau.

View Article and Find Full Text PDF

In Alzheimer's disease (AD) and tauopathies, tau becomes hyperphosphorylated, undergoes a conformational change, and becomes aggregated and insoluble. There are three methods commonly used to study the insoluble tau fraction, two that utilize detergents (Sarkosyl and RIPA) and another that does not (insoluble). However, these methods require large amounts of homogenate for a relatively low yield of the insoluble fraction, which can be problematic when dealing with small tissue samples.

View Article and Find Full Text PDF

Transgenic mouse models have been an invaluable resource in elucidating the complex roles of β-amyloid and tau in Alzheimer's disease. Although many laboratories rely on qualitative or semiquantitative techniques when investigating tau pathology, we have developed 4 Low-Tau, Sandwich enzyme-linked immunosorbent assays (ELISAs) that quantitatively assess different epitopes of tau relevant to Alzheimer's disease: total tau, pSer-202, pThr-231, and pSer-396/404. In this study, after comparing our assays with commercially available ELISAs, we demonstrate our assay's high specificity and quantitative capabilities using brain homogenates from tau transgenic mice, htau, JNPL3, and tau knockout.

View Article and Find Full Text PDF

Familial dementias, which include Alzheimer disease (AD), familial British dementia (FBD), and familial Danish dementia (FDD), are caused by dominantly inherited autosomal mutations and are characterized by the production of amyloidogenic peptides, neurofibrillary tangles (NFTs) and neurodegeneration (St George-Hyslop and Petit, 2005; Garringer et al., 2009). The prevailing pathogenic theory, the "amyloid cascade hypothesis" (Hardy and Selkoe, 2002), posits that the accumulation of amyloidogenic peptides triggers tauopathy, neurodegeneration, and cognitive and behavioral changes.

View Article and Find Full Text PDF

AMP-activated protein kinase (AMPK) is a metabolic sensor involved in intracellular energy metabolism through the control of several homeostatic mechanisms, which include autophagy and protein degradation. Recently, we reported that AMPK activation by resveratrol promotes autophagy-dependent degradation of the amyloid-β (Aβ) peptides, the core components of the cerebral senile plaques in Alzheimer's disease. To identify more potent enhancers of Aβ degradation, we screened a library of synthetic small molecules selected for their structural similarities with resveratrol.

View Article and Find Full Text PDF

Background: Regulated intramembranous proteolysis of the amyloid-beta precursor protein by the gamma-secretase yields amyloid-beta, which is the major component of the amyloid plaques found in Alzheimer's disease (AD), and the APP intracellular domain (AID). In vitro studies have involved AID in apoptosis and gene transcription. In vivo studies, which utilize transgenic mice expressing AID in the forebrain, only support a role for AID in apoptosis but not gene transcription.

View Article and Find Full Text PDF

Mounting evidence suggests that peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is involved in the modulation of pathogenic events related to Alzheimer's disease (AD). Such events would include the cerebral deposition of amyloid-beta (Abeta) and the consequent local inflammatory response. PPAR-gamma has been shown to act on both fronts, reducing either the secretion of Abeta or the expression of pro-inflammatory cytokines.

View Article and Find Full Text PDF

The Alzheimer's disease (AD) brain pathology is characterized by extracellular deposits of amyloid-beta (Abeta) peptides and intraneuronal fibrillar structures. These pathological features may be functionally linked, but the mechanism by which Abeta accumulation relates to neuronal degeneration is still poorly understood. Abeta peptides are fragments cleaved from the amyloid precursor protein (APP), a transmembrane protein ubiquitously expressed in the nervous system.

View Article and Find Full Text PDF

Peroxisome proliferator-activated receptor-gamma (PPARgamma), a member of the nuclear receptor superfamily, is activated by several compounds including the thiazolidinediones. In addition to being a target for diabetes, PPARgamma activation state has recently been shown to modulate beta-amyloid peptide (Abeta) production in cellular models relevant to Alzheimer's disease. Here, we report the effect of troglitazone, a thiazolidinedione, in cells expressing 4-repeat tau.

View Article and Find Full Text PDF

Down syndrome (DS) is the most common genetic disorder with mental retardation and is caused by trisomy 21. By the age of 40 years, virtually all adults with DS have sufficient neuropathology for a diagnosis of Alzheimer's disease (AD), which is characterized by accumulation of amyloid-beta in senile plaques and formation of neurofibrillary tangles. Amyloid-beta derives from a longer precursor protein, APP, whose gene maps to chromosome 21.

View Article and Find Full Text PDF

Recent data indicate that PPARgamma (peroxisome proliferator-activated receptor gamma) could be involved in the modulation of the amyloid cascade causing Alzheimer's disease. In the present study we show that PPARgamma overexpression in cultured cells dramatically reduced Abeta (amyloid-beta) secretion, affecting the expression of the APP (Abeta precursor protein) at a post-transcriptional level. APP down-regulation did not involve the pathway of the secretases and correlated with a significant induction of APP ubiquitination.

View Article and Find Full Text PDF

Accumulation of advanced glycation end products (AGEs) induces alterations in the intracellular redox balance, leading cells to functional injury. Current literature reports that intracellular signaling triggered by the interaction of AGEs with their specific receptors RAGEs depends on the cell type and the state of activation/stress. In this work, NT2 human neurons were exposed for 48 h to glycated fetal serum containing 750-3000 pmol/ml pentosidine; the treatment induced an increase in apoptosis rate linear with AGE concentration up to 1500 pmol/ml, but necrotic death was elicited with the highest AGE amount employed (3000 pmol/ml pentosidine).

View Article and Find Full Text PDF