In digenic inheritance, pathogenic variants in two genes must be inherited together to cause disease. Only very few examples of digenic inheritance have been described in the neuromuscular disease field. Here we show that predicted deleterious variants in SRPK3, encoding the X-linked serine/argenine protein kinase 3, lead to a progressive early onset skeletal muscle myopathy only when in combination with heterozygous variants in the TTN gene.
View Article and Find Full Text PDFHuman cytomegalovirus (CMV) has infected humans since the origin of our species and currently infects most of the world's population. Variability between CMV genomes is the highest of any human herpesvirus, yet large portions of the genome are conserved. Here, we show that the genome encodes 74 regions of relatively high variability each with 2 to 8 alleles.
View Article and Find Full Text PDFExcessive neutrophil extravasation can drive immunopathology, exemplified in pyogenic meningitis caused by infection. Insufficient knowledge of the mechanisms that amplify neutrophil extravasation has limited innovation in therapeutic targeting of neutrophil mediated pathology. Attention has focussed on neutrophil interactions with endothelia, but data from mouse models also point to a role for the underlying pericyte layer, as well as perivascular macrophages, the only other cell type found within the perivascular space in the cerebral microvasculature.
View Article and Find Full Text PDFA recent surge in human mastadenovirus (HAdV) cases, including five deaths, amongst a haematopoietic stem cell transplant population led us to use whole genome sequencing (WGS) to investigate. We compared sequences from 37 patients collected over a 20-month period with sequences from GenBank and our own database of HAdVs. Maximum likelihood trees and pairwise differences were used to evaluate genotypic relationships, paired with the epidemiological data from routine infection prevention and control (IPC) records and hospital activity data.
View Article and Find Full Text PDFHost immune responses at the site of infection can mediate pathogenesis of tuberculosis (TB) and onward transmission of infection. We hypothesized that pathological immune responses would be enriched at the site of host-pathogen interactions modeled by a standardized tuberculin skin test (TST) challenge in patients with active TB compared to those without disease, and interrogated immune responses by genome-wide transcriptional profiling. We show exaggerated interleukin-17A (IL-17A) and T helper 17 (T17) responses among 48 individuals with active TB compared to 191 with latent TB infection, associated with increased neutrophil recruitment and matrix metalloproteinase-1 expression, both involved in TB pathogenesis.
View Article and Find Full Text PDFModern DNA sequencing has instituted a new era in human cytomegalovirus (HCMV) genomics. A key development has been the ability to determine the genome sequences of HCMV strains directly from clinical material. This involves the application of complex and often non-standardized bioinformatics approaches to analysing data of variable quality in a process that requires substantial manual intervention.
View Article and Find Full Text PDFHuman herpesvirus 6A and 6B (HHV-6) can integrate into the germline, and as a result, ∼70 million people harbor the genome of one of these viruses in every cell of their body. Until now, it has been largely unknown if 1) these integrations are ancient, 2) if they still occur, and 3) whether circulating virus strains differ from integrated ones. Here, we used next-generation sequencing and mining of public human genome data sets to generate the largest and most diverse collection of circulating and integrated HHV-6 genomes studied to date.
View Article and Find Full Text PDFBackground: There is an urgent need to develop biomarkers that stratify risk of bacterial infection in order to support antimicrobial stewardship in emergency hospital admissions.
Methods: We used computational machine learning to derive a rule-out blood transcriptomic signature of bacterial infection (SeptiCyte™ TRIAGE) from eight published case-control studies. We then validated this signature by itself in independent case-control data from more than 1500 samples in total, and in combination with our previously published signature for viral infections (SeptiCyte™ VIRUS) using pooled data from a further 1088 samples.
Pre-eclampsia (typically characterized by new-onset hypertension and proteinuria in the second half of pregnancy) represents a major determinant of the global burden of disease. Its pathophysiology involves placental dysfunction, but the mechanism is unclear. Viral infection can cause organ dysfunction, but its role in placentally related disorders of human pregnancy is unknown.
View Article and Find Full Text PDFObjectives: Cytokines released by infiltrating T cells may promote mechanisms leading to fibrosis in scleroderma. The aim of this study was to investigate the role of the Th2 cytokine IL-31, and its receptor IL-31RA, in scleroderma skin and lung fibrosis.
Methods: IL-31 was measured by ELISA of plasma, and by immunochemistry of fibrotic skin and lung tissue of scleroderma patients.
Objective: In systemic sclerosis (SSc), a persistent tissue repair process leads to progressive fibrosis of the skin and internal organs. The role of mesenchymal stem cells (MSCs), which characteristically initiate and regulate tissue repair, has not been fully evaluated. We undertook this study to investigate whether dividing metakaryotic MSCs are present in SSc skin and to examine whether exposure to the disease microenvironment activates MSCs and leads to transdifferentiation.
View Article and Find Full Text PDFBackground: Multiple blood transcriptional signatures have been proposed for identification of active and incipient tuberculosis. We aimed to compare the performance of systematically identified candidate signatures for incipient tuberculosis and to benchmark these against WHO targets.
Methods: We did a systematic review and individual participant data meta-analysis.
Objective: Varicella zoster virus (VZV) can spread anterogradely and infect cerebral arteries causing VZV vasculopathy and arterial ischemic stroke. In this study, we tested the hypothesis that virus-infected cerebrovascular fibroblasts undergo phenotypic changes that promote vascular remodeling and facilitate virus transmission in an in vitro model of VZV vasculopathy. The aims of this project were therefore to examine the changes that virus-infected human brain adventitial vascular fibroblasts (HBVAFs) undergo in an in vitro model of VZV vasculopathy and to identify disease biomarkers relating to VZV-related vasculopathy.
View Article and Find Full Text PDFVaricella zoster virus (VZV) is a skin-tropic virus that infects epidermal keratinocytes and causes chickenpox. Although common, VZV infection can be life-threatening, particularly in the immunocompromized. Therefore, understanding VZV-keratinocyte interactions is important to find new treatments beyond vaccination and antiviral drugs.
View Article and Find Full Text PDF