Coordinated development of excitatory and inhibitory synapses is essential for higher brain function, and impairment in this development is associated with neuropsychiatric disorders. In contrast to the large body of accumulated evidence regarding excitatory synapse development, little is known about synaptic adhesion and organization mechanisms underlying inhibitory synapse development. Through unbiased expression screens and proteomics, we identified immunoglobulin superfamily member 21 (IgSF21) as a neurexin2α-interacting membrane protein that selectively induces inhibitory presynaptic differentiation.
View Article and Find Full Text PDFThe development of targeted therapeutics for rare neurodevelopmental disorders (NDDs) faces significant challenges due to the scarcity of subjects and the difficulty of obtaining human neural cells. Here, we illustrate a rapid, simple protocol by which patient derived cells can be reprogrammed to induced pluripotent stem cells (iPSCs) using an episomal vector and differentiated into neurons. Using this platform enables patient somatic cells to be converted to physiologically active neurons in less than two months with minimal labor.
View Article and Find Full Text PDFCortical GABAergic interneurons represent a highly diverse neuronal type that regulates neural network activity. In particular, interneurons in the hippocampal CA1 oriens/alveus (O/A-INs) area provide feedback dendritic inhibition to local pyramidal cells and express somatostatin (SOM). Under relevant afferent stimulation patterns, they undergo long-term potentiation (LTP) of their excitatory synaptic inputs through multiple induction and expression mechanisms.
View Article and Find Full Text PDFSeveral neurodevelopmental disorders (NDDs) are caused by mutations in genes expressed in fetal brain, but little is known about these same genes in adult human brain. Here, we test the hypothesis that genes associated with NDDs continue to have a role in adult human brain to explore the idea that NDD symptoms may be partially a result of their adult function rather than just their neurodevelopmental function. To demonstrate adult brain function, we performed expression analyses and ChIPseq in human neural stem cell(NSC) lines at different developmental stages and adult human brain, targeting two genes associated with NDDs, SATB2 and EHMT1, and the WNT signaling gene TCF7L2, which has not been associated with NDDs.
View Article and Find Full Text PDFThe eukaryotic initiation factor 4E-binding protein-2 (4E-BP2) is a repressor of cap-dependent mRNA translation and a major downstream effector of the mammalian target of rapamycin (mTOR) implicated in hippocampal long-term synaptic plasticity and memory. Yet, synaptic mechanisms regulated by 4E-BP2 translational repression remain unknown. Combining knock-out mice, whole-cell recordings, spine analysis, and translation profiling, we found that 4E-BP2 deletion selectively upregulated synthesis of glutamate receptor subunits GluA1 and GluA2, facilitating AMPA receptor (AMPAR)-mediated synaptic transmission and affecting translation-dependent chemically induced late long-term potentiation (cL-LTP).
View Article and Find Full Text PDFHyperconnectivity of neuronal circuits due to increased synaptic protein synthesis is thought to cause autism spectrum disorders (ASDs). The mammalian target of rapamycin (mTOR) is strongly implicated in ASDs by means of upstream signalling; however, downstream regulatory mechanisms are ill-defined. Here we show that knockout of the eukaryotic translation initiation factor 4E-binding protein 2 (4E-BP2)-an eIF4E repressor downstream of mTOR-or eIF4E overexpression leads to increased translation of neuroligins, which are postsynaptic proteins that are causally linked to ASDs.
View Article and Find Full Text PDFFrontotemporal dementia (FTD) has been linked to mutations in the progranulin gene (GRN) that lead to progranulin (PGRN) haploinsufficiency. Thus far, our understanding of the effects of PGRN depletion in the brain has been derived from investigation of gross pathology, and more detailed analyses of cellular function have been lacking. We report that knocking down PGRN levels in rat primary hippocampal cultures reduces neural connectivity by decreasing neuronal arborization and length as well as synapse density.
View Article and Find Full Text PDFWe examined synaptic plasticity in the dentate gyrus (DG) of the hippocampus in vitro in juvenile C57Bl6 mice (28-40 days of age), housed in control conditions with minimal enrichment (Controls) or with access to an exercise wheel (Runners). LTP expression was significantly greater in slices from Runners than in those from Controls, but could be blocked by APV in both groups. LTP was significantly reduced by NR2B subunit antagonists in both groups.
View Article and Find Full Text PDFStimulation of presynaptic nicotinic acetylcholine receptors (nAChRs) increases the frequency of miniature excitatory synaptic activity (mEPSCs) to a point where they can promote cell firing in hippocampal CA3 neurons. We have evaluated whether nicotine regulation of miniature synaptic activity can be extended to inhibitory transmission onto striatal medium spiny projection neurons (MSNs) in acute brain slices. Bath application of micromolar nicotine typically induced 12-fold increases in the frequency of miniature inhibitory synaptic currents (mIPSCs).
View Article and Find Full Text PDF