Tyrosine kinase inhibitors (TKIs) that block the vascular endothelial growth factor receptors (VEGFRs) not only disrupt tumor angiogenesis but also have many unexpected side effects that impact tumor cells directly. This includes the induction of molecular markers associated with senescence, a form of cellular aging that typically involves growth arrest. We have shown that VEGFR TKIs can hijack these aging programs by transiently inducting senescence markers (SMs) in tumor cells to activate senescence-associated secretory programs that fuel drug resistance.
View Article and Find Full Text PDFTyrosine kinase inhibitors (TKIs) that block the vascular endothelial growth factor receptors (VEGFRs) disrupt tumor angiogenesis but also have many unexpected side-effects that impact tumor cells directly. This includes the induction of molecular markers associated with senescence, a form of cellular aging that typically involves growth arrest. We have shown that VEGFR TKIs can hijack these aging programs by transiently inducting senescence-markers (SMs) in tumor cells to activate senescence-associated secretory programs that fuel drug resistance.
View Article and Find Full Text PDFPurpose: Although recent regulations improved conditions of laboratory animals, their use remains essential in cancer research to determine treatment efficacy. In most cases, such experiments are performed on xenografted animals for which tumor volume is mostly estimated from caliper measurements. However, many formulas have been employed for this estimation and no standardization is available yet.
View Article and Find Full Text PDFThe use of in silico trials is expected to play an increasingly important role in the development and regulatory evaluation of new medical products. Among the advantages that in silico approaches offer, is that they permit testing of drug candidates and new medical devices using virtual patients or computational emulations of preclinical experiments, allowing to refine, reduce or even replace time-consuming and costly benchtop/in vitro/ex vivo experiments as well as the involvement of animals and humans in in vivo studies. To facilitate and widen the adoption of in silico trials, InSilicoTrials Technologies has developed a cloud-based platform, hosting healthcare simulation tools for different bench, preclinical and clinical evaluations, and for diverse disease areas.
View Article and Find Full Text PDFUnderstanding the dynamics underlying fluid transport in tumour tissues is of fundamental importance to assess processes of drug delivery. Here, we analyse the impact of the tumour microscopic properties on the macroscopic dynamics of vascular and interstitial fluid flow. More precisely, we investigate the impact of the capillary wall permeability and the hydraulic conductivity of the interstitium on the macroscopic model arising from formal asymptotic 2-scale techniques.
View Article and Find Full Text PDFTumor growth curves are classically modeled by means of ordinary differential equations. In analyzing the Gompertz model several studies have reported a striking correlation between the two parameters of the model, which could be used to reduce the dimensionality and improve predictive power. We analyzed tumor growth kinetics within the statistical framework of nonlinear mixed-effects (population approach).
View Article and Find Full Text PDF