Publications by authors named "Cristina V Berenguer"

Terpenoids are a large class of natural secondary plant metabolites which are highly diverse in structure, formed from isoprene units (C-5), associated with a wide range of biological properties, including antioxidant, antimicrobial, anti-inflammatory, antiallergic, anticancer, antimetastatic, antiangiogenesis, and apoptosis induction, and are considered for potential application in the food, cosmetics, pharmaceutical, and medical industries. In plants, terpenoids exert a variety of basic functions in growth and development. This review gives an overview, highlighting the current knowledge of terpenoids and recent advances in our understanding of the organization, regulation, and diversification of core and specialized terpenoid metabolic pathways and addressing the most important functions of volatile and non-volatile specialized terpenoid metabolites in plants.

View Article and Find Full Text PDF

Consumers in developed and Western European countries are becoming more aware of the impact of food on their health, and they demand clear, transparent, and reliable information from the food industry about the products they consume. They recognise that food safety risks are often due to the unexpected presence of contaminants throughout the food supply chain. Among these, mycotoxins produced by food-infecting fungi, endogenous toxins from certain plants and organisms, pesticides, and other drugs used excessively during farming and food production, which lead to their contamination and accumulation in foodstuffs, are the main causes of concern.

View Article and Find Full Text PDF

The overuse of antibiotics in the healthcare, veterinary, and agricultural industries has led to the development of antimicrobial resistance (AMR), resulting in significant economic losses worldwide and a growing healthcare problem that urgently needs to be solved. Plants produce a variety of secondary metabolites, making them an area of interest in the search for new phytochemicals to cope with AMR. A great part of agri-food waste is of plant origin, constituting a promising source of valuable compounds with different bioactivities, including those against antimicrobial resistance.

View Article and Find Full Text PDF

Prostate cancer (PCa) continues to be the second most common malignant tumour and the main cause of oncological death in men. Investigating endogenous volatile organic metabolites (VOMs) produced by various metabolic pathways is emerging as a novel, effective, and non-invasive source of information to establish the volatilomic biosignature of PCa. In this study, headspace solid-phase microextraction combined with gas chromatography-mass spectrometry (HS-SPME/GC-MS) was used to establish the urine volatilomic profile of PCa and identify VOMs that can discriminate between the two investigated groups.

View Article and Find Full Text PDF

Prostate cancer (PCa) is the most frequently occurring type of malignant tumor and a leading cause of oncological death in men. PCa is very heterogeneous in terms of grade, phenotypes, and genetics, displaying complex features. This tumor often has indolent growth, not compromising the patient's quality of life, while its more aggressive forms can manifest rapid growth with progression to adjacent organs and spread to lymph nodes and bones.

View Article and Find Full Text PDF

Despite the spectacular advances in molecular medicine, including genomics, proteomics, transcriptomics, lipidomics, and personalized medicine, supported by the discovery of the human genome, prostate cancer (PCa) remains the most frequent malignant tumor and a leading cause of oncological death in men. New methods for prognostic, diagnostic, and therapy evaluation are mainly based on the combination of imaging techniques with other methodologies, such as gene or protein profiling, aimed at improving PCa management and surveillance. However, the lack of highly specific and sensitive biomarkers for its early detection is a major hurdle to this goal.

View Article and Find Full Text PDF

Green extraction techniques (GreETs) emerged in the last decade as greener and sustainable alternatives to classical sample preparation procedures aiming to improve the selectivity and sensitivity of analytical methods, simultaneously reducing the deleterious side effects of classical extraction techniques (CETs) for both the operator and the environment. The implementation of improved processes that overcome the main constraints of classical methods in terms of efficiency and ability to minimize or eliminate the use and generation of harmful substances will promote more efficient use of energy and resources in close association with the principles supporting the concept of green chemistry. The current review aims to update the state of the art of some cutting-edge GreETs developed and implemented in recent years focusing on the improvement of the main analytical features, practical aspects, and relevant applications in the biological, food, and environmental fields.

View Article and Find Full Text PDF