-Methylation of amines is of great interest in the synthesis of pharmaceuticals and valuable compounds, and the possibility to perform this reaction with an inexpensive and non-toxic substrate like CO and its derivatives is quite appealing. Herein, the synthesis of four novel homoleptic Cu(II) complexes with hybrid NHC-phenolate (NHC = -Heterocyclic Carbene) ligands is reported, and their use in the catalytic -methylation of amines with CO in the presence of hydrosilanes is explored. Both bidentate or tetradentate ligands can be used in the preparation of the complexes provided that the structural requirement that the two NHC and the two phenolate donors in the metal coordination sphere are mutually in is fulfilled.
View Article and Find Full Text PDFTwo -alkyloxy-'-phenylimidazolium proligands and the corresponding platinum(II) cyclometalated -alkyloxyimidazol-2-ylidene complexes with β-diketonate auxiliary ligands, [(C^C*)Pt(L∩L)] (L∩L = acetyacetonate (acac) or 1,3-bis(2,4,6-trimethylphenyl)-propane-1,3-dionato (mesacac)) were synthesized and fully characterized. In addition, a Au(I) monocarbene complex was synthesized, isolated and characterized. Solid-state structures of two cyclometalated platinum(II) NOHC complexes and the Au(I) NOHC complex were obtained providing structural proof.
View Article and Find Full Text PDFDinuclear bisNHC (bis(N-heterocyclic carbene)) gold(I) complexes 3 a and 4 a of general formula [Au Br (bisNHC)] were tested as catalysts in the cycloisomerization of N-(prop-2-yn-1-yl)benzamide and in the hydromethoxylation of 3-hexyne in the presence of silver(I) activators bearing different counteranions. The catalytic performance of mononuclear NHC complexes (1 a, 2 a) in the same reactions was also studied. The results highlighted the fundamental role of both NHC ligand and counterion in the catalytic cycles and activation process: dinuclear catalysts exhibit higher initial activity even under milder conditions but suffer in terms of stability with respect to mono NHCs.
View Article and Find Full Text PDFA series of six Mn(I) complexes with general formula [MnBr(bisNHC)(CO) ], having a bidentate bis(N-heterocyclic carbene) ligand (bisNHC), has been developed by varying the bridging group between the NHC donors, the nitrogen wingtip substituents and the heterocyclic ring. The synthesis of the complexes has been accomplished by in situ transmetalation of the bisNHC from the corresponding silver(I) complexes. Removal of the bromide anion affords the corresponding solvento complexes [Mn(bisNHC)(CO) (CH CN)](BF ).
View Article and Find Full Text PDFWe set up an in silico experiment and designed a chimeric compound integrating molecular features from different efficient ROS (Reactive Oxygen Species) scavengers, with the purpose of investigating potential relationships between molecular structure and antioxidant activity. Furthermore, a selenium centre was inserted due to its known capacity to reduce hydroperoxides, acting as a molecular mimic of glutathione peroxidase; finally, since this organoselenide is a precursor of a N-heterocyclic carbene ligand, its Au(I) carbene complex was designed and examined. A validated protocol based on DFT (Density Functional Theory) was employed to investigate the radical scavenging activity of available sites on the organoselenide precursor ((SMD)-M06-2X/6-311+G(d,p)//M06-2X/6-31G(d)), as well as on the organometallic complex ((SMD)-M06-2X/SDD (Au), 6-311+G(d,p)//ZORA-BLYP-D3(BJ)/TZ2P), considering HAT (Hydrogen Atom Transfer) and RAF (Radical Adduct Formation) regarding five different radicals.
View Article and Find Full Text PDFUse of iron-based catalysts in atom transfer radical polymerization (ATRP) is very interesting because of the abundance of the metal and its biocompatibility. Although the mechanism of action is not well understood yet, iron halide salts are usually used as catalysts, often in the presence of nitrogen or phosphorous ligands (L). In this study, electrochemically mediated ATRP (eATRP) of methyl methacrylate (MMA) catalyzed by FeCl3, both in the absence and presence of additional ligands, was investigated in dimethylformamide.
View Article and Find Full Text PDFThe use of alkynyl gold(I) complexes covers different research fields, such as bioinorganic chemistry, catalysis, and material science, considering the luminescent properties of the complexes. Regarding this last application, we report here the synthesis of three novel dinuclear gold(I) complexes of the general formula [(diNHC)(Au-C≡CPh)]: two Au-C≡CPh units are connected by a bridging di(N-heterocyclic carbene) ligand, which should favor the establishment of semi-supported aurophilic interactions. The complexes can be easily synthesized through mechanochemistry upon reacting the pristine dibromido complexes [(diNHC)(AuBr)] with phenylacetylene and KOH.
View Article and Find Full Text PDFA small library of dinuclear gold(I) complexes with the title ligands has been prepared, encompassing neutral, mono- and dicationic complexes. The luminescence properties of the complexes in the solid state have been evaluated, and it turns out that neutral and monocationic complexes not presenting a rigid metallamacrocyclic structure can exhibit rather strong emissions that extend towards the red region of the visible spectrum. The anticancer activity of the complexes has been also preliminarly evaluated; cytotoxicity seems to correlate with complex lipophilicity, whereas selectivity towards cancer cells can be apparently enhanced upon a judicious choice of the ligands.
View Article and Find Full Text PDFThe design of novel metal complexes with -heterocyclic carbene (NHC) ligands that display biological activity is an active research field in organometallic chemistry. One of the possible approaches consists of the use of NHC ligands functionalized with a carbohydrate moiety. Two novel Au(I)-Au(I) dinuclear complexes were synthesized; they present a neutral structure with one bridging diNHC ligand, having one or both heterocyclic rings decorated with a carbohydrate functionality.
View Article and Find Full Text PDFThe chemical structure and morphology of a set of sulfonic gel-type poly(styrene-divinylbenzene) resins (2 mol% DVB) prepared with different synthetic approaches were investigated by solid state NMR, Inverse Size Exclusion Chromatography (ISEC), FT-IR and elemental analysis to compare their swollen state structure. FT-IR and solid state NMR clearly show that the sulfonation mainly occurs in the para- position with respect the main polymer chain. Sensible proportions of sulfone bridges were found in the materials obtained with oleum and chlorosulfonic acid.
View Article and Find Full Text PDFLight-driven water oxidation is achieved with the Ru(bpy)/SO cycle employing the highly active water oxidation catalyst, namely, an Ir(pyalc) μ-oxo-dimer [pyalc = 2-(2'-pyridyl)-2-propanoate]. is readily formed by stepwise oxidation of the monomeric Ir(III) precursor by the photogenerated Ru(bpy), with a quantum yield ϕ of up to 0.10.
View Article and Find Full Text PDFNovel silver(I), gold(I), and palladium(II) complexes were synthesized with bidentate heteroditopic carbene ligands that combine an imidazol-2-ylidene (NHC) with a 1,2,3-triazol-5-ylidene (NHC) connected by a propylene bridge. The silver(I) and gold(I) complexes were dinuclear species, [M(NHC-NHC)](PF) (M = Ag or Au), with the two bidentate ligands bridging the metal centers, whereas in the palladium(II) complex [Pd(NHC-NHC)](PF), the two ligands were chelated on the same metal center. Because of the presence of two different carbene units, isomers were observed for the gold(I) and palladium(II) complexes.
View Article and Find Full Text PDFThe synthesis of heterobimetallic complexes remains a synthetic challenge in the field of organometallic chemistry. A possible approach in this regard might be the use of a bidentate heteroditopic bis(carbene) ligand that combines an imidazol-2-ylidene (NHC) with a 1,2,3-triazol-5-ylidene (NHC) connected by an organic spacer. The optimized strategy to heterobimetallic complexes with this type of ligand involves a 3-step procedure: (i) Coordination of the NHC, functionalized with a 1,2,3-triazole ring, to a metal center; (ii) formation of the triazolium ring by alkylation of the triazole N-3; (iii) deprotonation of the NHC precursor and coordination of the second metal center.
View Article and Find Full Text PDFComput Struct Biotechnol J
February 2019
Zolpidem (,-Dimethyl-2-[6-methyl-2-(4-methylphenyl)imidazo[1,2-]pyridin-3-yl]acetamide) is a well-known drug for the treatment of sleeping disorders. Recent literature reports on positive effects of zolpidem therapy on improving renal damage after cisplatin and on reducing akinesia without sleep induction. This has been ascribed to the antioxidant and neuroprotective capacity of this molecule, and tentatively explained according to a generic structural similarity between zolpidem and melatonin.
View Article and Find Full Text PDFTreatment of the tricationic gold(iii) [Au(MeImCHImMe)](PF) complex 1-3PF6 (Im = imidazol-2-ylidene) with excess halides affords complexes 1-3X (X = Cl, Br, and I), resulting from counter anion PF/X exchange. The H chemical shift of the CH groups and particularly that of the CH linker in DMSO-d are different in the three complexes, thus suggesting selective XHC interactions. Complex 13+ can therefore be used as a halide sensor in DMSO and water.
View Article and Find Full Text PDFGold(I) dicarbene complexes [Au2 (MeIm-Y-ImMe)2 ](PF6 )2 (Y=CH2 (1), (CH2 )2 (2), (CH2 )4 (4), MeIm=1-methylimidazol-2-ylidene) react with iodine to give the mixed-valence complex [Au(MeIm-CH2 -ImMe)2 AuI2 ](PF6 )2 (1 a(I) ) and the gold(III) complexes [Au2 I4 (MeIm-Y-ImMe)2 ](PF6 )2 (2 c(I) and 4 c(I) ). Reaction of complexes 1 and 2 with an excess of ICl allows the isolation of the tetrachloro gold(III) complexes [Au2 Cl4 (MeIm-CH2 -ImMe)2 ](PF6 )2 (1 c(Cl) ) and [Au2 Cl4 (MeIm-(CH2 )2 -ImMe)2 ](Cl)2 (2 c(Cl) -Cl) (as main product); remarkably in the case of complex 2, the X-ray molecular structure of the crystals also shows the presence of I-Au-Cl mixed-sphere coordination. The same type of coordination has been observed in the main product of the reaction of complexes 3 or 4 with ICl.
View Article and Find Full Text PDFWe present herein a personal account of our achievements in the development of novel catalytic systems based on late-transition-metal complexes for the hydroarylation of alkynes. In particular, our targets were intermolecular hydroarylation reactions with arene or heteroarene substrates devoid of directing groups. We have shown that complexes of palladium, platinum or gold with N-heterocyclic carbene (NHC) ligands can be particularly useful catalysts for this reaction; the NHC ligand imparts greater stability to the complex and renders the catalytic system more productive.
View Article and Find Full Text PDFThree novel dinuclear bis-dicarbene silver(i) complexes of general formula [Ag2(MeIm-phenylene-MeIm)2](PF6)2 (Im = imidazol-2-ylidene) were synthesized. The corresponding copper(i) and gold(i) complexes were obtained by transmetalation of the di(N-heterocyclic carbene) ligand from the silver(i) species, and both coordination geometry and stoichiometry are maintained for all three group 11 metals as expected. The photophysical properties of the Ag(i) and Au(i) complexes were also investigated and discussed; in particular the most strongly emitting complex was also studied via DFT calculations.
View Article and Find Full Text PDFDiimidazolium salts featuring different bridges between the imidazolium groups, as well as electron-withdrawing groups (chloride, cyanide) at the 4- and 5-position of the heterocyclic rings, have been successfully prepared. The diimidazolium salts serve as convenient precursors of di(N-heterocyclic carbene) ligands, which coordinate in a chelating fashion to palladium(ii) centres. The effect of the newly introduced electron-withdrawing groups on the spectroscopic and structural characteristics of the resulting complexes as well as on their reactivity as catalysts in a model alkyne hydroarylation reaction has been investigated and is discussed herein.
View Article and Find Full Text PDFNew dinuclear di(N-heterocyclic carbene) silver(I), gold(I) and gold(III) complexes have been synthesised and their antiproliferative effects towards various cancer cell lines have been screened. The di(N-heterocyclic carbene) ligands have a propylene linker between the carbene moieties and the imidazole backbone has been functionalised with a 1-benzyl- or 1-PEG-1,2,3-triazole ring (PEG=poly(ethylene glycol)) via a CuAAC (copper azido alkyne cycloaddition) reaction. The resulting gold(I) and gold(III) complexes display an antiproliferative activity superior to that of the unfunctionalised pristine complexes together with a higher selectivity towards cancerous cells with respect to healthy cells.
View Article and Find Full Text PDFFour novel dinuclear N-heterocyclic dicarbene gold(I) complexes with a propylene linker between the carbene moieties have been synthesized and their luminescence and electrochemical properties, together with their reactivity towards bromine oxidative addition, have been screened. All the complexes emit in the solid state in the blue-green spectral range (400-500 nm) with appreciable intensities (Φ(em) up to ≈10%). In cyclic voltammetry, the Au(I)/Au(0) peak splits at low temperature into two separate peaks relative to the couples Au(I)-Au(I)/Au(I)-Au(0) and Au(I)-Au(0)/Au(0)-Au(0), thus indicating the presence of an Au···Au interaction in the dinuclear complex.
View Article and Find Full Text PDFMono- and dinuclear gold complexes with N-heterocyclic carbene (NHC) ligands have been employed as catalysts in the intermolecular hydroarylation of alkynes with simple unfunctionalised arenes. Both mono- and dinuclear gold(III) complexes were able to catalyze the reaction; however, the best results were obtained with the mononuclear gold(I) complex IPrAuCl. This complex, activated with one equivalent of silver tetrafluoroborate, exhibited under acidic conditions at room temperature much higher catalytic activity and selectivity compared to more commonly employed palladium(II) catalysts.
View Article and Find Full Text PDFDinuclear N-heterocyclic dicarbene gold(I) complexes of general formula [Au(2)(RIm-Y-ImR)(2)](PF(6))(2) (R = Me, Cy; Y = (CH(2))(1-4), o-xylylene, m-xylylene) have been synthesized and screened for their luminescence properties. All the complexes are weakly emissive in solution whereas in the solid state some of them show significant luminescence intensities. In particular, crystals or powders of the complex with R = Me, Y = (CH(2))(3) exhibit an intense blue emission (λ(max) = 450 nm) with a high quantum yield (Φ(em) = 0.
View Article and Find Full Text PDF