The antibiotic fusidic acid potently inhibits bacterial translation (and cellular growth) by lodging between domains I and III of elongation factor G (EF-G) and preventing release of EF-G from the ribosome. We examined the functions of key amino acid residues near the active site of EF-G that interact with fusidic acid and regulate hydrolysis of GTP. Alanine mutants of these residues spontaneously hydrolyzed GTP in solution, bypassing the normal activating role of the ribosome.
View Article and Find Full Text PDFElongation factor G (EF-G) is one of several GTP hydrolytic proteins (GTPases) that cycles repeatedly on and off the ribosome during protein synthesis in bacterial cells. In the functional cycle of EF-G, hydrolysis of guanosine 5'-triphosphate (GTP) is coupled to tRNA-mRNA translocation in ribosomes. GTP hydrolysis induces conformational rearrangements in two switch elements in the G domain of EF-G and other GTPases.
View Article and Find Full Text PDFWe have trapped elongation factor G (EF-G) from Escherichia coli in six, functionally defined states, representing intermediates in its unidirectional catalytic cycle, which couples GTP hydrolysis to tRNA-mRNA translocation in the ribosome. By probing EF-G with trypsin in each state, we identified a substantial conformational change involving its conserved switch I (sw1) element, which contacts the GTP substrate. By attaching FeBABE (a hydroxyl radical generating probe) to sw1, we could monitor sw1 movement (by approximately 20 A), relative to the 70S ribosome, during the EF-G cycle.
View Article and Find Full Text PDF