The chicken embryo has emerged as a valuable model for preclinical studies due to its unique combination of accessibility, affordability, and relevance to human biology. Its rapid development, external growth environment, and clear structural visibility offer distinct advantages over traditional mammalian models. These features facilitate the study of real-time biological processes, including tissue development, tumor growth, angiogenesis, and drug delivery, using various imaging modalities, such as optical imaging, magnetic resonance imaging, positron emission tomography, computed tomography, and ultrasound.
View Article and Find Full Text PDFBackground: Oncogene-driven NSCLC is usually treated with targeted therapies using tyrosine kinase inhibitors (TKIs) to inhibit oncogene downstream signaling pathways, affecting tumor survival and proliferation. EGFR- and KRAS-mutant NSCLCs are the most represented subtypes, and they are treated in clinical practice with oncogene-targeting drugs in the first and second line, respectively. Unfortunately, the development of oncogene-independent resistant clones limits TKI efficacy.
View Article and Find Full Text PDFIntroduction: Neutrophil extracellular traps (NETs) are complex structures released by activated neutrophils that may modulate different steps of the metastatic cascade. The aim of our study was to investigate how NETs can modulate the adhesion properties of cancer cells and whether cell exposure to NETs can activate the epithelial-to-mesenchymal transition (EMT) program thus enhancing the migratory and invasive properties of tumor cells.
Materials And Methods: Different cancer cell lines were subjected to a solid-phase adhesion assay using NET-coated plates with or without the addition of antibodies against α5β1 or CCDC25 receptor.
Background: ATM is a multifunctional serine/threonine kinase that in addition to its well-established role in DNA repair mechanisms is involved in a number of signaling pathways including regulation of oxidative stress response and metabolic diversion of glucose through the pentose phosphate pathway. Oncogene-driven tumorigenesis often implies the metabolic switch from oxidative phosphorylation to glycolysis which provides metabolic intermediates to sustain cell proliferation. The aim of our study is to elucidate the role of ATM in the regulation of glucose metabolism in oncogene-driven cancer cells and to test whether ATM may be a suitable target for anticancer therapy.
View Article and Find Full Text PDFWe review the literature on the little-known roles of specific CaMKs in regulating endocrine functions of the pineal gland, the pituitary gland, and the hypothalamus. Melatonin activates hippocampal CaMKII, which then influences dendritogenesis. In the pituitary gland, the signal pathways activated by the CaMK in lower vertebrates, such as fishes, differ from those of mammals.
View Article and Find Full Text PDFCOVID-19 pandemic had a great impact on health systems and cancer care worldwide. Patients with cancer who develop COVID-19 are at high risk of severe outcomes and clarifying the determinants of such vulnerability of cancer patients would be of great clinical benefit. While the mechanisms of SARS-CoV-2 infection have been elucidated, the pathogenetic pathways leading to severe manifestations of the disease are largely unknown.
View Article and Find Full Text PDFPreclinical imaging with radiolabeled probes became an integral part of the complex translational process that moves a newly developed compound from laboratory to clinical application. Imaging studies in animal tumor models may be undertaken to test a newly synthesized tracer, a newly developed drug or to interrogate, in the living organism, specific molecular and biological processes underlying tumor growth and progression. The aim of the present review is to outline the current knowledge and future perspectives of preclinical imaging in oncology by providing examples from recent literature.
View Article and Find Full Text PDF