Charcot-Marie-Tooth disease type 1A (CMT1A), caused by duplication of the peripheral myelin protein 22 (PMP22) gene, and CMT1B, caused by mutations in myelin protein zero (MPZ) gene, are the two most common forms of demyelinating CMT (CMT1), and no treatments are available for either. Prior studies of the MpzSer63del mouse model of CMT1B have demonstrated that protein misfolding, endoplasmic reticulum (ER) retention and activation of the unfolded protein response (UPR) contributed to the neuropathy. Heterozygous patients with an arginine to cysteine mutation in MPZ (MPZR98C) develop a severe infantile form of CMT1B which is modelled by MpzR98C/ + mice that also show ER stress and an activated UPR.
View Article and Find Full Text PDFThe endoplasmic reticulum (ER) chaperone Grp94/gp96 appears to be involved in cytoprotection without being required for cell survival. This study compared the effects of Grp94 protein levels on Ca homeostasis, antioxidant cytoprotection and protein-protein interactions between two widely studied cell lines, the myogenic C2C12 and the epithelial HeLa, and two breast cancer cell lines, MDA-MB-231 and HS578T. In myogenic cells, but not in HeLa, Grp94 overexpression exerted cytoprotection by reducing ER Ca storage, due to an inhibitory effect on SERCA2.
View Article and Find Full Text PDFSchwann cells produce a considerable amount of lipids and proteins to form myelin in the PNS. For this reason, the quality control of myelin proteins is crucial to ensure proper myelin synthesis. Deletion of serine 63 from P0 (P0S63del) protein in myelin forming Schwann cells causes Charcot-Marie-Tooth type 1B neuropathy in humans and mice.
View Article and Find Full Text PDFMyelin Protein Zero (MPZ/P0) is the most abundant glycoprotein of peripheral nerve myelin. P0 is synthesized by myelinating Schwann cells, processed in the endoplasmic reticulum (ER) and delivered to myelin via the secretory pathway. The mutant P0S63del (deletion of serine 63 in the extracellular domain of P0), that causes Charcot-Marie-Tooth type 1B (CMT1B) neuropathy in humans and a similar demyelinating neuropathy in transgenic mice, is instead retained the ER where it activates an unfolded protein response.
View Article and Find Full Text PDFIn the peripheral nervous system (PNS) myelinating Schwann cells synthesize large amounts of myelin protein zero (P0) glycoprotein, an abundant component of peripheral nerve myelin. In humans, mutations in P0 cause the demyelinating Charcot-Marie-Tooth 1B (CMT1B) neuropathy, one of the most diffused genetic disorders of the PNS. We previously showed that several mutations, such as the deletion of serine 63 (P0-S63del), result in misfolding and accumulation of P0 in the endoplasmic reticulum (ER), with activation of the unfolded protein response (UPR).
View Article and Find Full Text PDFMyelin sheath thickness is precisely regulated and essential for rapid propagation of action potentials along myelinated axons. In the peripheral nervous system, extrinsic signals from the axonal protein neuregulin 1 (NRG1) type III regulate Schwann cell fate and myelination. Here we ask if modulating NRG1 type III levels in neurons would restore myelination in a model of congenital hypomyelinating neuropathy (CHN).
View Article and Find Full Text PDFCharcot-Marie-Tooth (CMT) neuropathies are a group of genetic disorders that affect the peripheral nervous system with heterogeneous pathogenesis and no available treatment. Axonal neuregulin 1 type III (Nrg1TIII) drives peripheral nerve myelination by activating downstream signaling pathways such as PI3K/Akt and MAPK/Erk that converge on master transcriptional regulators of myelin genes, such as Krox20. We reasoned that modulating Nrg1TIII activity may constitute a general therapeutic strategy to treat CMTs that are characterized by reduced levels of myelination.
View Article and Find Full Text PDFSchwann cell differentiation and myelination in the PNS are the result of fine-tuning of positive and negative transcriptional regulators. As myelination starts, negative regulators are downregulated, whereas positive ones are upregulated. Fully differentiated Schwann cells maintain an extraordinary plasticity and can transdifferentiate into "repair" Schwann cells after nerve injury.
View Article and Find Full Text PDFCigarette smoke exposure causes chronic oxidative lung damage. During pregnancy, fetal microchimeric cells traffic to the mother. Their numbers are increased at the site of acute injury.
View Article and Find Full Text PDFP0 glycoprotein is an abundant product of terminal differentiation in myelinating Schwann cells. The mutant P0S63del causes Charcot-Marie-Tooth 1B neuropathy in humans, and a very similar demyelinating neuropathy in transgenic mice. P0S63del is retained in the endoplasmic reticulum of Schwann cells, where it promotes unfolded protein stress and elicits an unfolded protein response (UPR) associated with translational attenuation.
View Article and Find Full Text PDFCurcumin is a non-toxic polyphenol with pleiotropic activities and limited bioavailability. We investigated whether a brief exposure to low doses of curcumin would induce in the myogenic C2C12 cell line an endoplasmic reticulum (ER) stress response and protect against oxidative stress. A 3-hr curcumin administration (5-10 microM) increased protein levels of the ER chaperone Grp94, without affecting those of Grp78, calreticulin and haeme-oxygenase-1 (HO-1).
View Article and Find Full Text PDFBackground: Ventricular arrhythmias are life-threatening complications of heart failure and myocardial ischemia. Increased diastolic Ca2+ overload occurring in ischemia leads to afterdepolarizations and aftercontractions that are responsible for cellular electric instability. We inquired whether sarcoplasmic reticulum Ca2+ ATPase pump (SERCA2a) overexpression could reduce ischemic ventricular arrhythmias by modulating Ca2+ overload.
View Article and Find Full Text PDFRat hindlimb muscles constitutively express the inducible heat shock protein 72 (Hsp70), apparently in proportion to the slow myosin content. Since it remains controversial whether chronic Hsp70 expression reflects the overimposed stress, we investigated Hsp70 cellular distribution in fast muscles of the posterior rat hindlimb after (1) mild exercise training (up to 30 m/min treadmill run for 1 h/day), which induces a remodeling in fast fiber composition, or (2) prolonged exposure to normobaric hypoxia (10%O(2)), which does not affect fiber-type composition. Both conditions increased significantly protein Hsp70 levels in the skeletal muscle.
View Article and Find Full Text PDFTo improve current knowledge of the molecular mechanisms underlying exercise-induced cardioprotection in a rat model of mild exercise training, Sprague-Dawley rats were trained to run on a treadmill up to 55% of their maximal oxygen uptake for 1 h/day, 3 days/week, 14 weeks, with age-matched sedentary controls (n = 20/group). Rats were sacrificed 48 h after the last training session. Despite lack of cardiac hypertrophy, training decreased blood hemoglobin (7.
View Article and Find Full Text PDF