Protein methylation is an important modification beyond epigenetics. However, systems analyses of protein methylation lag behind compared to other modifications. Recently, thermal stability analyses have been developed which provide a proxy of a protein functional status.
View Article and Find Full Text PDFHydrogen/deuterium exchange mass spectrometry (HDX-MS) is a biophysical technique well suited to the characterization of protein dynamics and protein-ligand interactions. In order to accurately define the rate of exchange, HDX experiments require the repeated measure of deuterium incorporation into the target protein across a range of time points. Accordingly, the HDX-MS experiment is well suited to automation, and a number of automated systems for HDX-MS have been developed.
View Article and Find Full Text PDFPluripotency emerges transiently during embryogenesis in two main forms with different developmental potential, termed naïve and primed states. Importantly, these pluripotent states can be recapitulated in vitro under specific culture conditions, representing a unique model to study the regulatory principles of development and cellular plasticity. Areas covered: A complex network of signaling pathways that senses intrinsic and extrinsic cues controls the fine balance between self-renewal and differentiation.
View Article and Find Full Text PDFMolecular characterization of the binding epitope of IL-23R and its cognate cytokine IL-23 is paramount to understand the role in autoimmune diseases and to support the discovery of new inhibitors of this protein-protein interaction. Our results revealed that HDX-MS was able to identify the binding epitope of IL-23R:IL-23, which opened the way to evaluate a peptide macrocycle described in the literature as disrupter of this autoimmune target. Thus, the characterization of the interactions of this chemotype by HDX-MS in combination with computational approaches was achieved.
View Article and Find Full Text PDF