Publications by authors named "Cristina Sanfilippo"

Muscle damage resulting from physical activities such as exercise triggers an immune response crucial for tissue repair and recovery. This study investigates the immune cell profiles in muscle biopsies of individuals engaged in resistance exercise (RE) and explores the impact of age and sex on the immune response following exercise-induced muscle damage. Microarray datasets from muscle biopsies of young and old subjects were analyzed, focusing on the gene expression patterns associated with immune cell activation.

View Article and Find Full Text PDF

Neurological complications of AIDS (NeuroAIDS) include primary HIV-associated neurocognitive disorder (HAND). OAS3 is an enzyme belonging to the 2', 5' oligoadenylate synthase family induced by type I interferons and involved in the degradation of both viral and endogenous RNA. Here, we used microarray datasets from NCBI of brain samples of non-demented HIV-negative controls (NDC), HIV, deceased patients with HAND and encephalitis (HIVE) (treated and untreated with antiretroviral therapy, ART), and with HAND without HIVE.

View Article and Find Full Text PDF

Background: Cholinergic hypofunction and sleep disturbance are hallmarks of Alzheimer's disease (AD), a progressive disorder leading to neuronal deterioration. Muscarinic acetylcholine receptors (M1-5 or mAChRs), expressed in hippocampus and cerebral cortex, play a pivotal role in the aberrant alterations of cognitive processing, memory, and learning, observed in AD. Recent evidence shows that two mAChRs, M1 and M3, encoded by CHRM1 and CHRM3 genes, respectively, are involved in sleep functions and, peculiarly, in rapid eye movement (REM) sleep.

View Article and Find Full Text PDF

Glial activation and related neuroinflammatory processes play a key role in the aging and progression of Alzheimer's disease (AD). CHI3L1/ YKL40 is a widely investigated chitinase in neurodegenerative diseases and recent studies have shown its involvement in aging and AD. Nevertheless, the biological function of CHI3L1 in AD is still unknown.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common form of progressively disabling dementia. The chitinases CHI3L1 and CHI3L2 have long been known as biomarkers for microglial and astrocytic activation in neurodegeneration. Here, we collected microarray datasets from the National Center for Biotechnology Information (NCBI) brain samples of non-demented controls (NDC) (n = 460), and of deceased patients with AD (n = 697).

View Article and Find Full Text PDF

Colorectal cancer (CRC) is one of the most common cancers in the world. Here, we undertook an analysis of microarray datasets consisting of colon biopsies of healthy subjects and of patients affected by CRC, in order to analyze the expression levels of Chitinase domain-containing protein 1 (CHID1) and to correlate them with the clinical data available in the datasets. Analysis of expression levels showed a significant increase of CHID1 in CRC biopsies compared to the mucosa of healthy subjects.

View Article and Find Full Text PDF

Human behavior is influenced by both genetic and environmental factors. Monoamine oxidase A (MAOA) is among the most investigated genetic determinants of violent behaviors, while the monoamine oxidase B (MAOB) is explored in Parkinson's disease. We collected twenty-four post-mortem brain tissue datasets of 3871 and 1820 non-demented males and females, respectively, who died from causes not attributable to neurodegenerative diseases.

View Article and Find Full Text PDF

Alzheimer's disease is a progressive, devastating, and irreversible brain disorder that, day by day, destroys memory skills and social behavior. Despite this, the number of known genes suitable for discriminating between AD patients is insufficient. Among the genes potentially involved in the development of AD, there are the chitinase-like proteins (CLPs) CHI3L1, CHI3L2, and CHID1.

View Article and Find Full Text PDF
Article Synopsis
  • Recent studies show that exercising can help keep our brains healthy and slow down the effects of aging on our brains.
  • The research looked at how different amounts of physical activity affected brain cell genes in older people, comparing those who were more active to those who were less active.
  • The results suggest that staying active leads to healthier brain cells and better mental function, which can improve the quality of life for elderly individuals.
View Article and Find Full Text PDF

Brain regions such as the cerebellum (CB) have been neglected for a long time in the study of Alzheimer's disease (AD) pathogenesis. In reference to a new emerging hypothesis according to which there is an altered cerebellar synaptic processing in AD, we verified the possible role played by new biomarkers in the CB of AD patients compared with not-demented healthy control subjects (NDHS). Using a bioinformatics approach, we have collected several microarray datasets and obtained 626 cerebella sample biopsies belonging to subjects who did not die from causes related to neurological diseases and 199 cerebella belonging to AD.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is one of the most common forms of dementia with still unknown pathogenesis. Several cytokines and chemokines are involved in the pathogenesis of AD. Among the chemokines, the CXCR4/CXCL12 complex has been shown to play an important role in the pathogenetic development of AD.

View Article and Find Full Text PDF

Background: SARS-CoV2, the agent responsible for the current pandemic, is also causing respiratory distress syndrome (RDS), hyperinflammation and high mortality. It is critical to dissect the pathogenetic mechanisms in order to reach a targeted therapeutic approach.

Methods: In the present investigation, we evaluated the effects of SARS-CoV on human bronchial epithelial cells (HBEC).

View Article and Find Full Text PDF

Alzheimer's disease (AD) represents one of the main forms of dementia that afflicts our society. The expression of several genes has been associated with disease development. Despite this, the number of genes known to be capable of discriminating between AD patients according to sex remains deficient.

View Article and Find Full Text PDF

Several genetic sexual dimorphisms have been identified in animal and human brains, which may form a neural basis for sex-specific predisposition to neurological diseases. In the last years, clinical studies have observed that Alzheimer's disease (AD) disproportionately affects women compared with men. Chitinase-3-Like 1 protein (CHI3L1) has been frequently investigated in body fluids as a surrogate marker of neuroinflammation in AD and other neurological disorders.

View Article and Find Full Text PDF

Exploring sexual dimorphisms in the brain morphology is important for their impact and therapeutic implications for several neurological diseases. The hypothesis that sex could influence the transcriptome of brain cells could be the basis regarding the different response to cognitive decline identified in men and women. In this paper, we analyzed several prefrontal cortices (PFC) microarrays datasets of young/middle-aged healthy subjects and then Alzheimer's disease (AD) patients, according to the sex.

View Article and Find Full Text PDF

Background: Juvenile dermatomyositis (JDM) is a systemic, autoimmune, interferon (IFN)-mediated inflammatory muscle disorder that affects children younger than 18 years of age. JDM primarily affects the skin and the skeletal muscles. Interestingly, the role of viral infections has been hypothesized.

View Article and Find Full Text PDF

Fasting may be exploited as a possible strategy for prevention and treatment of several diseases such as diabetes, obesity, and aging. On the other hand, high-fat diet (HFD) represents a risk factor for several diseases and increased mortality. The aim of the present study was to evaluate the impact of fasting on mouse brain aging transcriptome and how HFD regulates such pathways.

View Article and Find Full Text PDF

Synaptic dysfunction is linked to both major depressive disorder (MDD) and Alzheimer's disease (AD). Synapse protein concentrations in cerebrospinal fluid (CSF) may be useful biomarkers to monitor synaptic dysfunction and degeneration that lead to depressive symptoms and AD, respectively. CSF neurogranin (Ng), a post-synaptic protein, has emerged as a promising tool to measure synaptic dysfunction and/or loss in AD.

View Article and Find Full Text PDF

This work aims at exploring the human CSF (Cerebrospinal fluid) N-glycome by MALDI MS techniques, in order to assess specific glycosylation pattern(s) in patients with Alzheimer's disease (n:24) and in subjects with mild cognitive impairment (MCI) (n:11), these last as potential AD patients at a pre-dementia stage. For comparison, 21 healthy controls were studied. We identified a group of AD and MCI subjects (about 40-50% of the studied sample) showing significant alteration of CSF N-glycome profiling, consisting of a decrease in the overall sialylation degree and an increase in species bearing bisecting GlcNAc.

View Article and Find Full Text PDF

Malignant brain tumors are the most common pediatric solid tumors and are the leading cause of death from childhood cancers. These tumors include several histologic subtypes. Due to the particular properties of brain tumors, such as growth and division, examination of brain tumors and the analysis of results are not simple.

View Article and Find Full Text PDF

Objective/background: Executive dysfunctions and white matter lesions on magnetic resonance imaging have been reported in migraine. The aim of this study was to determine whether any correlation between these 2 variables exists.

Materials And Methods: Forty-four subjects affected by migraine with or without aura were compared with 16 healthy subjects.

View Article and Find Full Text PDF

Vitamin D3 is a key regulator of vertebrates homeostasis. It is synthesized from the precursor 7-dehydrocholesterol upon UVB exposure in the skin and then hydrolyzed in the liver in position 25, to be finally converted into its active form, 1,25-dihydroxyvitamin D (1,25(OH)2D or calcitriol), in the kidneys. The biological activity of this molecule depends on its binding to the nuclear receptor VDR, which binds VDRE once complexed with RXR-alpha.

View Article and Find Full Text PDF