Introduction: Transparency and traceability are essential for establishing trustworthy artificial intelligence (AI). The lack of transparency in the data preparation process is a significant obstacle in developing reliable AI systems which can lead to issues related to reproducibility, debugging AI models, bias and fairness, and compliance and regulation. We introduce a formal data preparation pipeline specification to improve upon the manual and error-prone data extraction processes used in AI and data analytics applications, with a focus on traceability.
View Article and Find Full Text PDFRecent findings suggest that Hematopoietic Stem Cells (HSC) and progenitors arise simultaneously and independently of each other already in the embryonic aorta-gonad mesonephros region, but it is still unknown how their different features are established. Here, we uncover IκBα (Nfkbia, the inhibitor of NF-κB) as a critical regulator of HSC proliferation throughout development. IκBα balances retinoic acid signaling levels together with the epigenetic silencer, PRC2, specifically in HSCs.
View Article and Find Full Text PDFCongenital heart disease (CHD) is the most prevalent congenital malformation, with about one million births impacted worldwide per year. Comprehensive investigation of this disease requires appropriate and validated animal models. Piglets are commonly used for translational research due to their analogous anatomy and physiology.
View Article and Find Full Text PDFRearrangements involving the mixed lineage leukemia gene (MLL) are found in the majority of leukemias that develop within the first year of age, known as infant leukemias, and likely originate during prenatal life. MLL rearrangements are also present in about 10% of other pediatric and adult acute myeloid leukemia (AML) and acute lymphoid leukemia (ALL). These translocations and others occurring in early life are associated with a dismal prognosis compared with adult leukemias carrying the same translocations.
View Article and Find Full Text PDFThe intestinal epithelium is a paradigm of adult tissue in constant regeneration that is supported by intestinal stem cells (ISCs). The mechanisms regulating ISC homeostasis after injury are poorly understood. We previously demonstrated that IκBα, the main regulator of NF-κB, exerts alternative nuclear functions as cytokine sensor in a subset of PRC2-regulated genes.
View Article and Find Full Text PDFHematopoietic stem cells (HSCs) develop from the hemogenic endothelium in cluster structures that protrude into the embryonic aortic lumen. Although much is known about the molecular characteristics of the developing hematopoietic cells, we lack a complete understanding of their origin and the three-dimensional organization of the niche. Here, we use advanced live imaging techniques of organotypic slice cultures, clonal analysis, and mathematical modeling to show the two-step process of intra-aortic hematopoietic cluster (IACH) formation.
View Article and Find Full Text PDFChronic myeloid leukemia (CML) progresses from a chronic to a blastic phase, where the leukemic cells are proliferative and undifferentiated. The CML is nowadays successfully treated with BCR-ABL kinase inhibitors as imatinib and its derivatives. NUMB is an evolutionary well-conserved protein initially described as a functional antagonist of NOTCH function.
View Article and Find Full Text PDFAcquisition of the arterial and haemogenic endothelium fates concurrently occur in the aorta-gonad-mesonephros (AGM) region prior to haematopoietic stem cell (HSC) generation. The arterial programme depends on Dll4 and the haemogenic endothelium/HSC on Jag1-mediated Notch1 signalling. How Notch1 distinguishes and executes these different programmes in response to particular ligands is poorly understood.
View Article and Find Full Text PDFLysyl oxidase-like 2 (LOXL2) is involved in a wide range of physiological and pathological processes, including fibrosis and tumor progression, implicating intracellular and extracellular functions. To explore the specific in vivo role of LOXL2 in physiological and tumor contexts, we generated conditional gain- and loss-of-function mouse models. Germ-line deletion of Loxl2 promotes lethality in half of newborn mice mainly associated to congenital heart defects, while Loxl2 overexpression triggers male sterility due to epididymal dysfunction caused by epithelial disorganization, fibrosis and acute inflammation.
View Article and Find Full Text PDFHematopoietic stem cell (HSC) specification occurs in the embryonic aorta and requires Notch activation; however, most of the Notch-regulated elements controlling de novo HSC generation are still unknown. Here, we identify putative direct Notch targets in the aorta-gonad-mesonephros (AGM) embryonic tissue by chromatin precipitation using antibodies against the Notch partner RBPj. By ChIP-on-chip analysis of the precipitated DNA, we identified 701 promoter regions that were candidates to be regulated by Notch in the AGM.
View Article and Find Full Text PDFHematopoietic stem cells (HSCs) emerge during embryogenesis from hemogenic endothelium, but it remains unclear how the HSC lineage is initially established from mesoderm during ontogeny. In Xenopus, the definitive hemangioblast precursors of the HSC lineage have been identified in dorsal lateral plate (DLP) mesoderm, and a transcriptional gene regulatory network (GRN) controlling hemangioblast programming has been elucidated. Herein, we identify an essential role for microRNAs (miRNAs) in establishing the mesodermal lineage leading to both HSC emergence and vasculogenesis and determine that a single miRNA, miR-142-3p, is primarily responsible for initiation of definitive hemangioblast specification.
View Article and Find Full Text PDFHematopoietic stem cells self-renew for life to guarantee the continuous supply of all blood cell lineages. Here we show that Poly(ADP-ribose) polymerase-2 (Parp-2) plays an essential role in hematopoietic stem/progenitor cells (HSPC) survival under steady-state conditions and in response to stress. Increased levels of cell death were observed in HSPC from untreated Parp-2-/- mice, but this deficit was compensated by increased rates of self-renewal, associated with impaired reconstitution of hematopoiesis upon serial bone marrow transplantation.
View Article and Find Full Text PDFUnderstanding how hematopoietic stem cells (HSCs) are generated and the signals that control this process is a crucial issue for regenerative medicine applications that require in vitro production of HSC. HSCs emerge during embryonic life from an endothelial-like cell population that resides in the aorta-gonad-mesonephros (AGM) region. We show here that β-catenin is nuclear and active in few endothelial nonhematopoietic cells closely associated with the emerging hematopoietic clusters of the embryonic aorta during mouse development.
View Article and Find Full Text PDF14-3-3σ is frequently lost in human breast cancers by genetic deletion or promoter methylation. We have now investigated the involvement of 14-3-3σ in the termination of NF-κB signal in mammary cells and its putative role in cancer relapse and metastasis. Our results show that 14-3-3σ regulates nuclear export of p65-NF-κB following chronic TNFα stimulation.
View Article and Find Full Text PDFSpecific deletion of Notch1 and RBPjkappa in the mouse results in abrogation of definitive haematopoiesis concomitant with the loss of arterial identity at embryonic stage. As prior arterial determination is likely to be required for the generation of embryonic haematopoiesis, it is difficult to establish the specific haematopoietic role of Notch in these mutants. By analysing different Notch-ligand-null embryos, we now show that Jagged1 is not required for the establishment of the arterial fate but it is required for the correct execution of the definitive haematopoietic programme, including expression of GATA2 in the dorsal aorta.
View Article and Find Full Text PDF