Symbiotic bacteria on animal hosts can prevent pathogenic bacterial infections by several mechanisms. Among them, symbiotic bacteria can indirectly enhance host's immune responses or, directly, produce antimicrobial substances against pathogens. Due to differences in life-style, different host species are under different risks of microbial infections.
View Article and Find Full Text PDFAnimal coloration results from pigments, nanostructures, or the cosmetic use of natural products, and plays a central role in social communication. The role of cosmetic coloration has traditionally been focused in scenarios of sexual selection, but it could also take place in other contexts. Here, by using spotless starlings () as a model system, we explore the possibility that nestlings cosmetically use their intensely yellow-colored uropygial secretion to signal their genetic and/or phenotypic quality.
View Article and Find Full Text PDFSibling cannibalism is relatively common in nature, but its evolution in birds and certain other vertebrates with extended parental care had been discarded. Here, however, we demonstrate its regular occurrence in two European populations of the Eurasian hoopoe () and explore possible adaptive and non-adaptive explanations. Results showed that sibling cannibalism was more frequently detected in Spain (51.
View Article and Find Full Text PDFThe use of feathers as nest material has been proposed as a kind of self-medication strategy because antimicrobial-producing microorganisms living on feathers may defend offspring against pathogenic infections. In this case, it is expected that density of antimicrobial-producing bacteria, and their antimicrobial effects, are higher in feathers that line the nests than in eggshells. Moreover, we know that feather pigmentation and breeding activity may influence density and antimicrobial production of bacteria.
View Article and Find Full Text PDFSelective pressures imposed by pathogenic microorganisms to embryos have selected in hosts for a battery of antimicrobial lines of defenses that includes physical and chemical barriers. Due to the antimicrobial properties of volatile compounds of green plants and of chemicals of feather degrading bacteria, the use of aromatic plants and feathers for nest building has been suggested as one of these barriers. However, experimental evidence suggesting such effects is scarce in the literature.
View Article and Find Full Text PDFExploring factors guiding interactions of bacterial communities with animals has become of primary importance for ecologists and evolutionary biologists during the last years because of their likely central role in the evolution of animal life history traits. We explored the association between laying date and eggshell bacterial load (mesophilic bacteria, Enterobacteriaceae, Staphylococci, and Enterococci) in natural and artificial magpie (Pica pica) nests containing fresh commercial quail (Coturnix coturnix) eggs. We manipulated hygiene conditions by spilling egg contents on magpie and artificial nests and explored experimental effects during the breeding season.
View Article and Find Full Text PDFThe egg-recognition processes underlying egg rejection are assumed to be based on an imprinting-like process (a female learning the aspect of her own eggs during her first breeding attempt). The imprinting-like process and the misimprinting costs have been the objective of many theoretical models and frequently have a leading role in papers published on brood parasitism; however, an experiment has never been undertaken to test the existence of this imprinting-like process by manipulating egg appearance in first-time breeding females. Here, we present the first such experimental study using the house sparrow (Passer domesticus), which is a conspecific brood parasite and which has a good ability to reject conspecific eggs, as a model species.
View Article and Find Full Text PDF