Publications by authors named "Cristina Rodriguez-Grande"

Article Synopsis
  • * Using two methods (long-read analysis with MIRUReader and standard amplification), results showed a high agreement between the two, with only 11 discrepancies out of 3,024 loci analyzed.
  • * The research suggests that long-read sequencing can improve the integration of historical TB data with genomic analysis, potentially enhancing tracking of TB transmission patterns.
View Article and Find Full Text PDF

Background: SARS-CoV-2 genomic analysis has been key to the provision of valuable data to meet both epidemiological and clinical demands. High-throughput sequencing, generally Illumina-based, has been necessary to ensure the widest coverage in global variant tracking. However, a speedier response is needed for nosocomial outbreak analyses and rapid identification of patients infected by emerging VOCs.

View Article and Find Full Text PDF

Centers for Disease Control and Prevention guidelines consider SARS-CoV-2 reinfection when sequential COVID-19 episodes occur >90 days apart. However, genomic diversity acquired over recent COVID-19 waves could mean previous infection provides insufficient cross-protection. We used genomic analysis to assess the percentage of early reinfections in a sample of 26 patients with 2 COVID-19 episodes separated by 20-45 days.

View Article and Find Full Text PDF

Introduction is a member of the complex (MTBC) not routinely identified to species level. It lacks specific clinical features of presentation and may therefore not be identified as the causative agent of tuberculosis. Use of whole genome sequencing (WGS) in the investigation of a family microepidemic of tuberculosis in Almería, Spain, unexpectedly identified the involvement of .

View Article and Find Full Text PDF

Despite the proven value of applying genomic data for epidemiological purposes, commonly used high-throughput sequencing formats are not adapted to the response times required to intervene and finally control outbreaks. In this study, we propose a fast alternative to whole-genome sequencing (WGS) to track relevant microbiological strains: nanopore sequencing of multiple amplicons including strain marker single nucleotide polymorphisms (SNPs). As a proof a concept, we evaluated the performance of our approach to offer a rapid response to the most recent public health global alarm, the monkeypox virus (MPXV) global outbreak.

View Article and Find Full Text PDF

Background: There is a paucity of knowledge on the long-term outcome in patients diagnosed with COVID-19. We describe a cohort of patients with a constellation of symptoms occurring four weeks after diagnosis causing different degrees of reduced functional capacity. Although different hypothesis have been proposed to explain this condition like persistent immune activation or immunological dysfunction, to date, no physiopathological mechanism has been identified.

View Article and Find Full Text PDF

Detection of mixed Mycobacterium tuberculosis (MTB) infections is essential, particularly when resistance mutations are present in minority bacterial populations that may affect patients' disease evolution and treatment. Whole-genome sequencing (WGS) has extended the amount of key information available for the diagnosis of MTB infection, including the identification of mixed infections. Having genomic information at diagnosis for early intervention requires carrying out WGS directly on the clinical samples.

View Article and Find Full Text PDF

Estimates of the burden of severe acute respiratory syndrome coronavirus 2 reinfections are limited by the scarcity of population-level studies incorporating genomic support. We conducted a systematic study of reinfections in Madrid, Spain, supported by genomic viral analysis and host genetic analysis, to cleanse laboratory errors and to discriminate between reinfections and recurrences involving the same strain. Among the 41,195 cases diagnosed (March 2020-March 2021), 93 (0.

View Article and Find Full Text PDF

We report a corona virus disease (COVID-19) case with unprecedented viral complexity. In the first severe episode, two different severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strains (superinfection) were identified within a week. Three months after discharge, the patient was readmitted and was infected in a nosocomial outbreak with a different strain, suffering a second milder COVID-19 episode.

View Article and Find Full Text PDF

Objectives: To characterize the clonal complexity in Mycobacterium tuberculosis (MTB) infections considering factors that help maximize the detection of coexisting strains/variants.

Methods: Genotypic analysis by Mycobacterial Interspersed Repetitive-Unit-Variable-Number Tandem-Repeats (MIRU-VNTR) was performed directly on 70 biopsy specimens from two or more different tissues involving 28 tuberculosis cases diagnosed post-mortem in Mozambique, a country with a high tuberculosis burden.

Results: Genotypic data from isolates collected from two or more tissues were obtained for 23 of the 28 cases (82.

View Article and Find Full Text PDF

Costa Rica has a low incidence of tuberculosis. Thus, identifying transmission hotspots is key to implement interventions. A tuberculosis outbreak was suspected in a prison in Costa Rica.

View Article and Find Full Text PDF

SARS-CoV-2 RT-PCR cycle threshold values from 18,803 cases (2 March-4 October) in Madrid define three stages: (i) initial ten weeks with sustained reduction in viral load (Ct: 23.4-32.3), (ii) stability with low viral loads (Ct: 31.

View Article and Find Full Text PDF

The purpose of this study was to detect coronavirus disease 2019 (COVID-19) cases with persistent positive reverse transcription-PCR (RT-PCR) results for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), for which viable virus can be inferred due to the presence of subgenomic (SG) viral RNA, which is expressed only in replicating viruses. RNA remnants purified from diagnostic nasopharyngeal specimens were used as the templates for RT-PCR-specific detection of SG E gene RNA. As controls, we also detected viral genomic RNA for the E gene and/or a human housekeeping gene (RNase P).

View Article and Find Full Text PDF