Publications by authors named "Cristina Revilla-Monsalve"

Atrial fibrillation (AF) is the most common arrhythmia, affecting approximately 33.5 millions of people worldwide. Unfortunately, the prevalence of this arrhythmia will increase within the following two decades, resulting in a higher mortality rate and a higher economic burden for public health services.

View Article and Find Full Text PDF

Learning alterations in the child population may be linked to gestational diabetes as a causal factor, though this remains an open and highly controversial question. In that sense, it has been reported that maternal hyperglycemia generates a threatening condition that affects hippocampal development in offspring. The pyramidal cells of the CA3 subfield, a key structure in learning and memory processes, are particularly important in cognitive deficiencies.

View Article and Find Full Text PDF

: Type 2 diabetes (T2D) is one of the leading causes of mortality and is a public health challenge worldwide. Metformin is the first-choice treatment for T2D; its pharmacokinetics (PK) is facilitated by members of the solute carrier (SLC) superfamily of transporters, it is not metabolized, and it is excreted by the kidney. Although interindividual variability in metformin pharmacokinetics is documented in the Mexican population, its pharmacogenomics is still underexplored.

View Article and Find Full Text PDF

Introduction: This systematic review and meta-analysis present a comprehensive evaluation of paper-based microfluidic devices, focusing on their applications in immunoassays. These devices are emerging as innovative solutions to democratize access to diagnostic technologies, especially in resource-limited settings. Our review consolidates findings from diverse studies to outline advancements in paper-based microfluidic technology, including design intricacies and operational efficacy.

View Article and Find Full Text PDF

Aims: Incomplete decongestion due to lack of titration of diuretics to effective doses is a common reason for readmission in patients with acute decompensated heart failure (ADHF). The natriuretic response prediction equation (NRPE) is a novel tool that proved to be rapid and accurate to predict natriuretic response and does not need urine collection. However, the NRPE has not been externally validated.

View Article and Find Full Text PDF

Human-induced extinction and rapid ecological changes require the development of techniques that can help avoid extinction of endangered species. The most used strategy to avoid extinction is reintroduction of the endangered species, but only 31% of these attempts are successful and they require up to 15 years for their results to be evaluated. In this research, we propose a novel strategy that improves the chances of survival of endangered predators, like lynx, by controlling only the availability of prey.

View Article and Find Full Text PDF

Proteins are some of the most fascinating and challenging molecules in the universe, and they pose a big challenge for artificial intelligence. The implementation of machine learning/AI in protein science gives rise to a world of knowledge adventures in the workhorse of the cell and proteome homeostasis, which are essential for making life possible. This opens up epistemic horizons thanks to a coupling of human tacit-explicit knowledge with machine learning power, the benefits of which are already tangible, such as important advances in protein structure prediction.

View Article and Find Full Text PDF

Introduction: Diabetes mellitus is a global burden that is expected to grow by 2030. This will increase the need for prevention, diagnosis and treatment of diabetes. Animal and individualized models will allow understanding and compensation for inter and intra-individual differences in treatment and management strategies for diabetic patients.

View Article and Find Full Text PDF

Large-scale gene sequencing studies for complex traits have the potential to identify causal genes with therapeutic implications. We performed gene-based association testing of blood lipid levels with rare (minor allele frequency < 1%) predicted damaging coding variation by using sequence data from >170,000 individuals from multiple ancestries: 97,493 European, 30,025 South Asian, 16,507 African, 16,440 Hispanic/Latino, 10,420 East Asian, and 1,182 Samoan. We identified 35 genes associated with circulating lipid levels; some of these genes have not been previously associated with lipid levels when using rare coding variation from population-based samples.

View Article and Find Full Text PDF

Background: The prevalence of diabetes as a catastrophic disease in childhood is growing in the world. The search for novel biomarkers of β-cell failure has been an elusive task because it requires several clinical and biochemical measurements in order to integrate the risk of metabolic syndrome.

Aim: To determine which biomarkers are currently used to identify β-cell failure among children and adolescents with high risk factors for diabetes mellitus.

View Article and Find Full Text PDF

Background And Objectives: Sepsis is a severe infection that increases mortality risk and is one if the main causes of death in intensive care units. Accurate detection is key to successful interventions, but diagnosis of sepsis is complicated because the initial signs and symptoms are not specific. Biomarkers that have been proposed have low specificity and sensitivity, are expensive, and not available in every hospital.

View Article and Find Full Text PDF

Genetic factors that affect variability in metformin response have been poorly studied in the Latin American population, despite its being the initial drug therapy for type 2 diabetes, one of the most prevalent diseases in that region. Metformin pharmacokinetics is carried out by members of the membrane transporters superfamily (SLCs), being the multidrug and toxin extrusion protein 1 (MATE1), one of the most studied. Some genetic variants in MATE1 have been associated with reduced in vitro metformin transport.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates the genetic variants linked to severe monogenic diseases, focusing on the unknown probability (penetrance) of these variants causing disease.
  • - Using exome sequencing data from over 77,000 individuals, researchers examine eight monogenic metabolic diseases, finding that rare variants have a greater impact than common polygenic scores.
  • - Despite the strong effect of rare variants, the average penetrance for monogenic variant carriers is only about 60%, although incorporating polygenic variation helps improve risk prediction for certain conditions.
View Article and Find Full Text PDF

Background And Aims: This is the first time that obesity and diabetes mellitus (DM) as protein conformational diseases (PCD) are reported in children and they are typically diagnosed too late, when β-cell damage is evident. Here we wanted to investigate the level of naturally-ocurring or real (not synthetic) oligomeric aggregates of the human islet amyloid polypeptide (hIAPP) that we called RIAO in sera of pediatric patients with obesity and diabetes. We aimed to reduce the gap between basic biomedical research, clinical practice-health decision making and to explore whether RIAO work as a potential biomarker of early β-cell damage.

View Article and Find Full Text PDF

The formation of amyloid oligomers and fibrils of the human islet amyloid polypeptide (hIAPP) has been linked with β- cell failure and death which causes the onset, progression, and comorbidities of diabetes. We begin to unpack the aggregation-oligomerization-fibrillization process of these oligomers taken from sera of pediatric patients. The naturally occurring or real hIAPP (not synthetic) amyloid oligomers (RIAO) were successfully isolated, we demonstrated the presence of homo (dodecamers, hexamers, and trimers) and hetero-RIAO, as well as several biophysical characterizations which allow us to learn from the real phenomenon taking place.

View Article and Find Full Text PDF

Protein-coding genetic variants that strongly affect disease risk can yield relevant clues to disease pathogenesis. Here we report exome-sequencing analyses of 20,791 individuals with type 2 diabetes (T2D) and 24,440 non-diabetic control participants from 5 ancestries. We identify gene-level associations of rare variants (with minor allele frequencies of less than 0.

View Article and Find Full Text PDF

Glucose-Insulin regulation models can be used to individualize insulin therapy. However, the experimental techniques currently used to identify the appropriate parameter sets of an individual are expensive, time consuming, and very unpleasant for the patient. Since there is a wide range of intrapersonal parameter variability, the identified parameters in a laboratory setting (at rest) are not optimal for dynamic conditions of daily activities.

View Article and Find Full Text PDF

Amerindian ancestry appears to be a risk factor for metabolic diseases (MetD), making Mexicans an ideal population to better understand the genetic architecture of metabolic health. In this study, we determine the association of genetic variants previously reported with metabolic entities, in two Mexican populations, including the largest sample of Amerindians reported to date. We investigated the association of eigth single-nucleotide polymorphisms (SNPs) in AKT1, GCKR, and SOCS3 genes with different metabolic traits in 1923 Mexican Amerindians (MAs) belonging to 57 ethnic groups, and 855 Mestizos (MEZs).

View Article and Find Full Text PDF

Human islet amyloid peptide (hIAPP) aggregation is an early step in Diabetes Mellitus. We aimed to evaluate a family of pharmaco-chaperones to act as modulators that provide dynamic interventions and the multi-target capacity (native state, cytotoxic oligomers, protofilaments and fibrils of hIAPP) required to meet the treatment challenges of diabetes. We used a cross-functional approach that combines in silico and in vitro biochemical and biophysical methods to study the hIAPP aggregation-oligomerization process as to reveal novel potential anti-diabetic drugs.

View Article and Find Full Text PDF

Objective: A previous multidisciplinary pilot study based on computer simulations for the geriatric population showed that a dose of 0.5 mg/kg/h of propofol could sedate patients older than 65 for pacemaker implantation. The present study validates that the pacemaker implantation can be done in the elderly using 0.

View Article and Find Full Text PDF

Protein folding is a process of self-assembly defined by the sequence of the amino acids of the protein involved. Additionally, proteins tend to unfold, misfold and aggregate due to both intrinsic and extrinsic causes. Human islet amyloid polypeptide (hIAPP) aggregation is an early step in diabetes mellitus.

View Article and Find Full Text PDF

Type 2 diabetes (T2D) affects more than 415 million people worldwide, and its costs to the health care system continue to rise. To identify common or rare genetic variation with potential therapeutic implications for T2D, we analyzed and replicated genome-wide protein coding variation in a total of 8,227 individuals with T2D and 12,966 individuals without T2D of Latino descent. We identified a novel genetic variant in the gene associated with ∼20% reduced risk for T2D.

View Article and Find Full Text PDF

The geriatric population shows significant physiological changes due to aging and the multiple co-morbidities that they often present. Conventionally the propofol sedation dose for patients older than 65 years is 80% of the adult dose. We performed an in silico trial for elderly population and the results showed that the necessary simulated dose of propofol was lower than the conventional dose; therefore, a clinical trial was implemented to test three different propofol doses, two of them lower than the conventional dose, during a pacemaker implantation.

View Article and Find Full Text PDF

Metabolic syndrome (MetS) is among the most important public health problems worldwide, and is recognized as a major risk factor for various illnesses, including type 2 diabetes mellitus, obesity, and cardiovascular diseases. Recently, oxidative stress has been suggested as part of MetS aetiology. The heme oxygenase 1 (HMOX1) and NADH:quinone oxidoreductase 1 (NQO1) genes are crucial mediators of cellular defence against oxidative stress.

View Article and Find Full Text PDF

Background: Prehypertension (preHTN) increases the risk of developing hypertension. The objectives of this study were to estimate the prevalence of preHTN in the Mexican adult population and evaluate the association between hypomagnesemia and preHTN.

Methods: This study was a 2-phase, population-based study.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session3urjvmabt3jjislrgdjmtonj1bvprpjo): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once