While past work has focused on the representational format of mental imagery, and the similarities of its operation and neural substrate to online perception, surprisingly little has tested the boundaries of the level of detail that mental imagery can generate. To answer this question, we take inspiration from the visual short-term memory literature, a related field which has found that memory capacity is affected by the number of items, whether they are unique, and whether and how they move. We test these factors of set size, color heterogeneity, and transformation in mental imagery through both subjective (Exp 1; Exp 2) and objective (Exp 2) measures - difficulty ratings and a change detection task, respectively - to determine the capacity limits of our mental imagery, and find that limits on mental imagery are similar to those for visual short-term memory.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
February 2021
Bar charts are among the most frequently used visualizations, in part because their position encoding leads them to convey data values precisely. Yet reproductions of single bars or groups of bars within a graph can be biased. Curiously, some previous work found that this bias resulted in an overestimation of reproduced data values, while other work found an underestimation.
View Article and Find Full Text PDFAtten Percept Psychophys
February 2020
Some types of object features, such as color, shape, or location, can be processed separately within the visual system, requiring that they be correctly "bound" to a single object via attentional selection of a subset of visual information. Forcing selection to spread too widely can cause an illusion where these features misbind to objects, creating illusory objects that were never present. Here, we present a novel display that produces a robust color-location misbinding illusion that we call foveal gravity (viewable at https://osf.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
January 2020
In visual depictions of data, position (i.e., the vertical height of a line or a bar) is believed to be the most precise way to encode information compared to other encodings (e.
View Article and Find Full Text PDF