Publications by authors named "Cristina Prandi"

In angiosperms, the strigolactone receptor is the α/β hydrolase DWARF14 (D14) that, upon strigolactone binding, undergoes conformational changes, triggers strigolactone-dependent responses, and hydrolyses strigolactones. Strigolactone signalling involves the formation of a complex between strigolactone-bound D14, the E3-ubiquitin ligase SCFMAX2, and the transcriptional corepressors SMXL6/7/8, which become ubiquitinated and degraded by the proteasome. Strigolactone also destabilizes the D14 receptor.

View Article and Find Full Text PDF

The application of biocatalysis has become essential in both academic and industrial domains for the asymmetric synthesis of chiral amines, and it serves as an alternative tool to transition-metal catalysis and complements traditional chemical methods. It relies on the swift expansion of available processes, primarily as a result of advanced tools for enzyme discovery, combined with high-throughput laboratory evolution techniques for optimizing biocatalysts. This concept paper explores the utilization of non-conventional media such as ether-type solvents, deep eutectic solvents, and micellar catalysis to enhance biocatalytic reactions for chiral amine synthesis.

View Article and Find Full Text PDF

Wittig reaction between substituted phosphonium salts and (hetero)aromatic and alkyl carbonyl compounds in Deep Eutectic Solvents has been developed under a scalable and friendly protocol. Highly efficient reactions were successfully run with a wide range of bases including organic (DBU, LiTMP, t-BuOK) and inorganic (NaOH, KCO) ones in ChCl/Gly 1 : 2 (mol/mol) as solvent under mild conditions, at room temperature and under air. The proposed protocol was applied to a wide range of substrates, including (hetero)aromatic aldehydes with substituents as halogens (I, Br, Cl), EDG (alkoxy, methyl), EWG (NO, CF) or reactive groups as CN, esters, and ketones.

View Article and Find Full Text PDF

Phytohormones have significant roles in redox metabolism, inflammatory responses, and cellular survival mechanisms within the microenvironment of the mammalian brain. Herein, we identified the mammalian molecular targets of three representative strigolactone (SL) analogues structurally derived from apocarotenoids and the functional equivalent of plant hormones. All tested SL analogues have an inhibitory effect on NLRP3 inflammasome-mediated IL-1β release in murine microglial cells.

View Article and Find Full Text PDF

The rise of drug resistance to antivirals poses a significant global concern for public health; therefore, there is a pressing need to identify novel compounds that can effectively counteract strains resistant to current antiviral treatments. In light of this, researchers have been exploring new approaches, including the investigation of natural compounds as alternative sources for developing potent antiviral therapies. Thus, this work aimed to evaluate the antiviral properties of the organic-soluble fraction of a root exudate derived from the tomato plant in the context of herpesvirus infections.

View Article and Find Full Text PDF

A methodology for the total and modulable synthesis of (4)-lachnophyllum lactone (), on a gram scale, is reported for the first time. The present work started with the design of a retrosynthetic pathway for the target compound, with the key step identified in Pd-Cu bimetallic cascade cross-coupling cyclization. (4)-Lachnophyllum lactone () is an acetylenic furanone previously isolated, in a low amount, from the organic extract of the autotrophic weed.

View Article and Find Full Text PDF
Article Synopsis
  • The study reports the first successful enantioselective reduction of 2-substituted cyclic imines to amines using imine reductases (IREDs) in non-conventional solvents.
  • The optimal reaction conditions were found in a glycerol/phosphate buffer mix, achieving over 99% conversions and moderate to good yields while maintaining high enantioselectivity.
  • A fed-batch protocol was developed, demonstrating that significant amounts of enantiopure amines can be produced efficiently, indicating potential for economically and environmentally sustainable large-scale applications in pharmaceuticals.
View Article and Find Full Text PDF

The current SARS-CoV-2 pandemic and the likelihood that new coronavirus strains will emerge in the immediate future point out the urgent need to identify new pan-coronavirus inhibitors. Strigolactones (SLs) are a class of plant hormones with multifaceted activities whose roles in plant-related fields have been extensively explored. Recently, we proved that SLs also exert antiviral activity toward herpesviruses, such as human cytomegalovirus (HCMV).

View Article and Find Full Text PDF

A mild and efficient telescoped procedure for the stereoselective alkenylation of simple, non-activated amides using LiCHSiMe and carbonyl compounds as surrogates of alkenyllithium reagents is reported. Our methodology relies on the formation of stable tetrahedral intermediates, which, upon collapse into highly reactive lithium enolates in a solvent-dependent fashion, allows for the assembly of α,β-unsaturated ketones in a single synthetic operation with high stereoselectivity.

View Article and Find Full Text PDF

The synthesis of acetals in acidic natural deep eutectic solvents (NADES), in which the solvent itself participates in the catalytic promotion of the reaction, is reported herein. The reaction is performed under feasible conditions, open air, without the need of external additives, catalysts or water-removing techniques, and it is wide in scope. The products are easily recovered, and the reaction medium is fully recycled and reused without weakening of its catalytic activity after 10 times.

View Article and Find Full Text PDF

During the last decade, a wide spectrum of applications and advantages in the use of deep eutectic solvents for promoting organic reactions has been well established among the scientific community. Among these synthetic methodologies, in recent years, various examples of biocatalyzed processes have been reported, making use of eutectic mixtures as reaction media, as an improvement in terms of selectivity and sustainability. This review aims to show the newly reported protocols in the field, subdivided by reaction class as a 'toolbox' guide for organic synthesis.

View Article and Find Full Text PDF

Terpenes are natural molecules of valuable interest for different industrial applications. Cytochromes P450 enzymes can functionalize terpenoids to form high value oxidized derivatives in a green and sustainable manner, representing a valid alternative to chemical catalysis. In this work, an enhanced and specific epoxidation activity of cytochrome P450 BM3 mutants was found for the terpenes geraniol and linalool.

View Article and Find Full Text PDF

A straightforward protocol to promote the tetrahydropyranylation of alcohols, using for the first time bioinspired acidic natural deep eutectic solvents (NADESs) as non-innocent reaction media under mild reaction conditions, was reported. This approach enables the preparation of several tetrahydropyranyl (THP) ethers starting from primary, secondary and tertiary alcohols in short reaction times and with high levels of chemoselectivity, working under air and without the need of additional catalyst. The sustainability of the methodology was further highlighted by its scalability and the easy recyclability of the NADES, allowing multigram preparations of THP ethers without any loss of the catalytic activity of the reaction media up to ten recycling steps.

View Article and Find Full Text PDF

A straightforward and efficient protocol to promote the metalation/anionic Fries rearrangements of O-aryl carbamates, using for the first time a lithium amide as metalating agent under aerobic/ambient-friendly reaction conditions, is reported. This approach enables the sustainable preparation of salicylamide derivatives with high levels of chemoselectivity within ultrafast reaction times, working at room temperature in the presence of air/moisture, and using environmentally responsible cyclopentyl methyl ether as a solvent. Furthermore, the regioselective manipulation of O-2-tolyl carbamates has been accomplished using interchangeably alkyllithiums or lithium amides, with an unexpected beneficial contribution from the employment of biorenewable protic eutectic mixtures as non-innocent reaction media.

View Article and Find Full Text PDF

Strigolactones (SLs), carotenoid-derived phytohormones, control the plant response and signaling pathways for stressful conditions. In addition, they impact numerous cellular processes in mammalians and present new scaffolds for various biomedical applications. Recent studies demonstrated that SLs possess potent antitumor activity against several cancer cells.

View Article and Find Full Text PDF

Strigolactones (SLs) are plant hormones and important signalling molecules required to promote arbuscular mycorrhizal (AM) symbiosis. While in plants an α/β-hydrolase, DWARF14 (D14), was shown to act as a receptor that binds and cleaves SLs, the fungal receptor for SLs is unknown. Since AM fungi are currently not genetically tractable, in this study, we used the fungal pathogen Cryphonectria parasitica, for which gene deletion protocols exist, as a model, as we have previously shown that it responds to SLs.

View Article and Find Full Text PDF

The selective synthesis of active pharmaceutical molecules is a challenging issue, particularly when attempting to make the reactions even more sustainable. The present work focuses on the microwave-assisted hydrogenolysis of oxytetracycline to selectively produce α-doxycycline. Although the combination of microwave irradiation and a heterogeneous rhodium catalyst provided good conversions, the selective synthesis of active α-doxycycline was only achieved when an oxytetracycline-cyclodextrin complex was used as the starting material, giving the desired product at 34.

View Article and Find Full Text PDF

Strigolactones (SLs) are a class of sesquiterpenoid plant hormones that play a role in the response of plants to various biotic and abiotic stresses. When released into the rhizosphere, they are perceived by both beneficial symbiotic mycorrhizal fungi and parasitic plants. Due to their multiple roles, SLs are potentially interesting agricultural targets.

View Article and Find Full Text PDF

The reactivity of "furan-ynes" in combination with pyridine and quinoline -oxides in the presence of a Au(I) catalyst, has been studied, enabling the synthesis of three different heterocyclic scaffolds. Selective access to two out of the three possible products, a dihydropyridinone and a furan enone, has been achieved through the fine-tuning of the reaction conditions. The reactions proceed smoothly at room temperature and open-air, and were further extended to a broad substrate scope, thus affording functionalized dihydropyridinones and pyranones.

View Article and Find Full Text PDF

Deep Eutectic Systems (DESs) are obtained by combining Hydrogen Bond Acceptors (HBAs) and Hydrogen Bond Donors (HBDs) in specific molar ratios. Since their first appearance in the literature in 2003, they have shown a wide range of applications, ranging from the selective extraction of biomass or metals to medicine, as well as from pollution control systems to catalytic active solvents and co-solvents. The very peculiar physical properties of DESs, such as the elevated density and viscosity, reduced conductivity, improved solvent ability and a peculiar optical behavior, can be exploited for engineering modular systems which cannot be obtained with other non-eutectic mixtures.

View Article and Find Full Text PDF

Short chain chitooligosaccharides (COs) are chitin derivative molecules involved in plant-fungus signaling during arbuscular mycorrhizal (AM) interactions. In host plants, COs activate a symbiotic signalling pathway that regulates AM-related gene expression. Furthermore, exogenous CO application was shown to promote AM establishment, with a major interest for agricultural applications of AM fungi as biofertilizers.

View Article and Find Full Text PDF

The selective formal insertion (homologation) of a carbon unit bridging the two trifluoroacetamidoyl chlorides (TFAICs) units is reported. The tactic is levered on a highly chemoselective homologation-metalation-acyl nucleophilic substitution sequence which precisely enables to assemble novel trifluoromethylated β-diketiminates within a single synthetic operation. Unlike previous homologations conducted with LiCHCl furnishing aziridines, herein we exploit the unique capability of iodomethyllithium to act contemporaneously as a C1 source (homologating effect) and metalating agent.

View Article and Find Full Text PDF

The unprecedented Nazarov cyclization of a model divinyl ketone using phosphonium-based Deep Eutectic Solvents as sustainable non-innocent reaction media is described. A two-level full factorial Design of Experiments was conducted for elucidating the effect of the components of the eutectic mixture and optimizing the reaction conditions in terms of temperature, time, and substrate concentration. In the presence of the Deep Eutectic Solvent (DES) triphenylmethylphosphonium bromide/ethylene glycol, it was possible to convert more than 80% of the 2,4-dimethyl-1,5-diphenylpenta-1,4-dien-3-one, with a specific conversion, into the cyclopentenone Nazarov derivative of 62% (16 h, 60 °C).

View Article and Find Full Text PDF
Article Synopsis
  • The nucleophilic acyl substitution of amides with organolithium reagents happens quickly (within 20 seconds) and efficiently in a green solvent, yielding ketones up to 93% without needing complex modifications.
  • DFT calculations and NMR studies back up the experimental findings, indicating a reliable and effective process.
  • This new method operates at room temperature and under air, suggesting a shift away from traditional inert atmosphere methodologies and making it easier to scale and recycle the reaction.
View Article and Find Full Text PDF

The human cytomegalovirus (HCMV) is a widespread pathogen and is associated with severe diseases in immunocompromised individuals. Moreover, HCMV infection is the most frequent cause of congenital malformation in developed countries. Although nucleoside analogs have been successfully employed against HCMV, their use is hampered by the occurrence of serious side effects.

View Article and Find Full Text PDF