Publications by authors named "Cristina Pozo-Gonzalo"

Rechargeable zinc batteries (RZBs) are highly attractive as energy storage solutions due to their low cost and sustainability. Nevertheless, the use of fluorine-free zinc electrolyte systems to create affordable, ecofriendly, and safe RZBs has been largely overlooked in the battery community. Previously, we showcased the utilization of a fluorine-free, nonaqueous electrolyte comprising zinc dicyanamide (Zn(dca)) in dimethyl sulfoxide (DMSO) to enable the electrochemical cycling of zinc.

View Article and Find Full Text PDF

Cobalt has a vital role in the manufacturing of reliable and sustainable clean energy technologies. However, the forecasted supply deficit for cobalt is likely to reach values of 150 kT by 2030. Therefore, it is paramount to consider end-of-life devices as secondary resources for cobalt.

View Article and Find Full Text PDF

Producing green hydrogen in a cost-competitive manner via water electrolysis will make the long-held dream of hydrogen economy a reality. Although platinum (Pt)-based catalysts show good performance toward hydrogen evolution reaction (HER), the high cost and scarce abundance challenge their economic viability and sustainability. Here, a non-Pt, high-performance electrocatalyst for HER achieved by engineering high fractions of stacking fault (SF) defects for MoNi/MoO nanosheets (d-MoNi) through a combined chemical and thermal reduction strategy is shown.

View Article and Find Full Text PDF

Aqueous zinc-iodine (Zn-I) batteries are gaining significant attention due to their low-cost, high safety and high theoretical capacity. Nevertheless, their long cycle and durability have been hampered due to the use of aqueous media that, over time, lead to Zn dendrite formation, hydrogen evolution reaction, and polyiodide dissolution. Xiao et al.

View Article and Find Full Text PDF

Metal-air batteries are an emerging technology with great potential to satisfy the demand for energy in high-consumption applications. However, this technology is still in an early stage, facing significant challenges such as a low cycle life that currently limits its practical use. Poly(3,4-ethylenedioxythiophene) (PEDOT) conducting polymer has already demonstrated its efficiency as catalyst for oxygen reduction reaction (ORR) discharge as an alternative to traditional expensive and nonsustainable metal catalysts.

View Article and Find Full Text PDF

The increasing demands for sustainable energy storage technologies have prompted extensive research in the development of eco-friendly materials for lithium-ion batteries (LIBs). This research article presents the design of biobased latexes, which are fluorine-free and rely on renewable resources, based on isobornyl methacrylate (IBOMA) and 2-octyl acrylate (2OA) to be used as binders in batteries. Three different compositions of latexes were investigated, varying the ratio of IBOMA and 2OA: (1) Poly2OA homopolymer, (2) Poly(2OA--IBOMA) random copolymer, and (3) PolyIBOMA homopolymer.

View Article and Find Full Text PDF

Sodium-air batteries (SABs) are receiving considerable attention for the development of next generation battery alternatives due to their high theoretical energy density (up to 1105 W h kg). However, most of the studies on this technology are still based on organic solvents; in particular, diglyme, which is highly flammable and toxic for the unborn child. To overcome these safety issues, this research investigates the first use of a branched ether solvent 1,2,3-trimethoxypropane (TMP) as an alternative electrolyte to diglyme for SABs.

View Article and Find Full Text PDF

Poly(vinylidene fluoride) (PVDF) is the most common binder for cathode electrodes in lithium-ion batteries. However, PVDF is a fluorinated compound and requires toxic -methyl-2-pyrrolidone (NMP) as a solvent during the slurry preparation, making the electrode fabrication process environmentally unfriendly. In this study, we propose the use of carrageenan biopolymers as a sustainable source of water-processable binders for high-voltage NMC811 cathodes.

View Article and Find Full Text PDF

The recovery of critical metals from spent lithium-ion batteries (LIBs) is rapidly growing. Current methods are energy-intensive and hazardous, while alternative solvent-based strategies require more studies on their 'green' character, metal dissolution mechanism and industrial applicability. Herein, we bridged this gap by studying the effect of dilute HCl solutions in hydroxylated solvents to dissolve Co, Ni and Mn oxides.

View Article and Find Full Text PDF

The agglomeration and encapsulation of recoverable materials of interest (e.g. metals and graphite) as a result of the presence of polyvinylidene fluoride (PVDF) in spent lithium-ion batteries (LIBs) with mixed chemistries (black mass) lower the extraction efficiency of metals.

View Article and Find Full Text PDF

A series of hybrid electrolytes composed of diglyme and ionic liquids (ILs) have been investigated for Na-O batteries, as a strategy to control the growth and purity of the discharge products during battery operation. The dependence of chemical composition of the ILs on the size, purity, and distribution of the discharge products has been evaluated using a wide range of experimental and spectroscopic techniques. The morphology and composition of the discharge products found in the Na-O cells have a complex dependence on the physicochemical properties of the electrolyte as well as the speciation of the Na and superoxide radical anion.

View Article and Find Full Text PDF
Article Synopsis
  • High-energy-density batteries, particularly those using lithium metal, need to overcome issues like dendrite growth and slow charging rates to be effective and safe for next-gen technology.
  • Researchers explored how varying lithium salt concentration and current density in superconcentrated ionic liquid electrolytes affect lithium deposit structure and efficiency, leading to impressive results like a 96% cycling efficiency at higher currents.
  • Advanced techniques like XPS and SEM showed that a stable solid electrolyte interphase, primarily composed of LiF, along with the use of a porous separator, played key roles in reducing dendrite formation and supporting sustained high-performance cycling over 500 cycles.
View Article and Find Full Text PDF

In order to bridge the gap between theoretical and practical energy density in sodium oxygen batteries challenges need to be overcome. In this work, four commercial air cathodes were selected, and the impacts of their morphologies, structure and chemistry on their performance with a pyrrolidinium-based ionic liquid electrolyte are evaluated. The highest discharge capacity was found for a cathode with a pore size ca.

View Article and Find Full Text PDF

The interphase layer that forms on either the anode or the cathode is considered to be one of the critical components of a high performing battery. This solid-electrolyte interphase (SEI) layer determines the stability of the electrode in the presence of a given electrolyte as well as the internal resistance of a battery, and hence the overpotential of a cell. In the case of lithium ion batteries where carbonate based electrolytes are used, additives including hexafluorophosphate (PF), bis-trifluoromethylsulfonimide (TFSI), (fluorosulfonyl)(trifluoromethanesulfonyl)imide (FTFSI), and fluorosulfonimde (FSI) are used to obtain favorable SEI layers.

View Article and Find Full Text PDF

Sodium-oxygen (Na-O) cells are a promising high energy density storage technology with a theoretical specific energy of 1605 Wh kg. However, this technology faces certain challenges in order to achieve both a high practical energy density as well as long-term cycling capability. In this Letter, a superior Coulombic cyclic efficiency, close to 100%, has been demonstrated by the use of a bilayer electrolyte composed of an ionogel and an ionic liquid electrolyte, reported herein for the first time.

View Article and Find Full Text PDF

A series of electrospun binder-free carbon nanofiber (CNF) mats have been studied as air cathodes for Na-oxygen batteries using a pyrrolidinium-based electrolyte and compared with the commercial air cathode Toray 090. A tenfold increase in the discharge capacity is attained when using CNFs in comparison with Toray 090, affording a discharge capacity of 1.53 mAh cm at a high discharge rate of 0.

View Article and Find Full Text PDF

Rare-earth metals are considered critical metals due to their extensive use in energy-related applications such as wind turbines and nickel-metal hybrid batteries found in hybrid electrical vehicles. A key drawback of the current processing methods includes the generation of large amounts of toxic and radioactive waste. Thus the efficient recovery of these valuable metals as well as cleaner processing methods are becoming increasingly important.

View Article and Find Full Text PDF

Thermoelectrochemical cells, also known as thermocells, are electrochemical devices for the conversion of thermal energy directly into electricity. They are a promising method for harvesting low-grade waste heat from a variety of different natural and manmade sources. The development of solid- or quasi-solid-state electrolytes for thermocells could address the possible leakage problems of liquid electrolytes and make this technology more applicable for wearable devices.

View Article and Find Full Text PDF

We report a thermally stable high-performance lithium battery using an electrochemically synthesized three-dimensional porous molybdenum disulfide/graphene composite electrode and a phosphonium-based ionic liquid (IL) electrolyte. Benefiting from the structural merits of the chosen electrode and the thermal stability of the electrolyte, the cell coupled with a Li foil exhibits excellent rate performance and cycling capability at room temperature; and that is retained with an even better rate capability at an elevated temperature of 50 °C. This work may provide a new avenue for the development of safe and high performance lithium-ion batteries at high temperature.

View Article and Find Full Text PDF

Photocatalytic conversion of carbon dioxide (CO) to useful products has potential to address the adverse environmental impact of global warming. However, most photocatalysts used to date exhibit limited catalytic performance, due to poor CO adsorption capacity, inability to efficiently generate photoexcited electrons, and/or poor transfer of the photogenerated electrons to CO molecules adsorbed on the catalyst surface. The integration of inorganic semiconductor nanoparticles across metal organic framework (MOF) materials has potential to yield new hybrid materials, combining the high CO adsorption capacity of MOF and the ability of the semiconductor nanoparticles to generate photoexcited electrons.

View Article and Find Full Text PDF

Biomass-derived polymers, such as lignin, contain quinone/ hydroquinone redox moieties that can be used to store charge. Composites based on the biopolymer lignin and several conjugated polymers have shown good charge-storage properties. However, their performance has been only studied in acidic aqueous media limiting their applications mainly to supercapacitors.

View Article and Find Full Text PDF

Liquid-solution polymerization and vapor-phase polymerization (VPP) have been used to manufacture a series of chloride- and tosylate-doped poly(3,4-ethylenedioxythiophene) (PEDOT) carbon paper electrodes. The electrochemistry, specific capacitance, and specific charge were determined for single electrodes in 1-ethyl-3-methylimidazolium dicyanamide (emim dca) ionic liquid electrolyte. VPP-PEDOT exhibits outstanding properties with a specific capacitance higher than 300 F g(-1) , the highest value reported for a PEDOT-based conducting polymer, and doping levels as high as 0.

View Article and Find Full Text PDF

New findings supporting the stability of the superoxide ion, O2˙(-), in the presence of the phosphonium cation, [P6,6,6,14](+), are presented. Extended electrochemical investigations of a series of neat phosphonium-based ILs with different anions, including chloride, bis(trifluoromethylsulfonyl)imide and dicyanamide, demonstrate the chemical reversibility of the oxygen reduction process. Quantum chemistry calculations show a short intermolecular distance (r = 3.

View Article and Find Full Text PDF

Detailed electrochemical studies have been undertaken on molecular aggregation of the organic semiconductor 7,14-bis((triisopropylsilyl)-ethynyl)dibenzo[b,def]chrysene (TIPS-DBC), which is used as an electron donor material in organic solar cells. Intermolecular association of neutral TIPS-DBC molecules was established by using (1)H NMR spectroscopy as well as by the pronounced dependence of the color of TIPS-DBC solutions on concentration. Diffusion limited current data provided by near steady-state voltammetry also reveal aggregation.

View Article and Find Full Text PDF

Stable electrogenerated superoxide ion has been observed for the first time in a phosphonium-based ionic liquid in the presence of water, leading to a chemically reversible O2/O2(•-) redox couple instead of the disproportionation reaction that is usually observed. It appears that the cation solvates the superoxide anion, stabilizing it against the disproportionation reaction. The electrogeneration is studied at various levels of water or other diluents including toluene to explore the limits of stability of the superoxide ion under these conditions.

View Article and Find Full Text PDF