Publications by authors named "Cristina Pogontke"

Background: The elaborate patterning of coronary arteries critically supports the high metabolic activity of the beating heart. How coronary endothelial cells coordinate hierarchical vascular remodeling and achieve arteriovenous specification remains largely unknown. Understanding the molecular and cellular cues that pattern coronary arteries is crucial to develop innovative therapeutic strategies that restore functional perfusion within the ischemic heart.

View Article and Find Full Text PDF

Generating organs from stem cells through blastocyst complementation is a promising approach to meet the clinical need for transplants. In order to generate rejection-free organs, complementation of both parenchymal and vascular cells must be achieved, as endothelial cells play a key role in graft rejection. Here, we used a lineage-specific cell ablation system to produce mouse embryos unable to form both the cardiac and vascular systems.

View Article and Find Full Text PDF

The space between cardiac myocytes is commonly referred-to as the cardiac interstitium (CI). The CI is a unique, complex and dynamic microenvironment in which multiple cell types, extracellular matrix molecules, and instructive signals interact to crucially support heart homeostasis and promote cardiac responses to normal and pathologic stimuli. Despite the biomedical and clinical relevance of the CI, its detailed cellular structure remains to be elucidated.

View Article and Find Full Text PDF

Objective- Cardiac progenitor cells reside in the heart in adulthood, although their physiological relevance remains unknown. Here, we demonstrate that after myocardial infarction, adult Bmi1 (B lymphoma Mo-MLV insertion region 1 homolog [PCGF4]) cardiac cells are a key progenitor-like population in cardiac neovascularization during ventricular remodeling. Approach and Results- These cells, which have a strong in vivo differentiation bias, are a mixture of endothelial- and mesenchymal-related cells with in vitro spontaneous endothelial cell differentiation capacity.

View Article and Find Full Text PDF

Background: Although efforts continue to find new therapies to regenerate infarcted heart tissue, knowledge of the cellular and molecular mechanisms involved remains poor.

Objectives: This study sought to identify the origin of cardiac fibroblasts (CFs) in the infarcted heart to better understand the pathophysiology of ventricular remodeling following myocardial infarction (MI).

Methods: Permanent genetic tracing of epicardium-derived cell (EPDC) and bone marrow-derived blood cell (BMC) lineages was established using Cre/LoxP technology.

View Article and Find Full Text PDF