Solid state fermentation (SSF) is an ancient technique which keeps attracting the attention of the food and biotechnology industries; however, a direct quantification of microbial biomass is still a fundamental challenge in this type of processes. Typically, growth is measured using indirect and destructive methods which do not allow a continuous evaluation of the evolution of microbial biomass within a single system. This article presents a non-destructive, quick and simple technique, based on digital imaging analysis (DIA) for the evaluation of growth in SSF laboratory experiments.
View Article and Find Full Text PDFBackground: Integrating waste management with fuels and chemical production is considered to address the food waste problem and oil crisis. Approximately, 600 million tonnes crude glycerol is produced from the biodiesel industry annually, which is a top renewable feedstock for succinic acid production. To meet the increasing demand for succinic acid production, the development of more efficient and cost-effective production methods is urgently needed.
View Article and Find Full Text PDF