Neurotrophins are important regulators of neuronal and non-neuronal functions. As such, the neurotrophins and their receptors, the tropomyosin receptor kinase (Trk) family of receptor tyrosine kinases, has attracted intense research interest and their role in multiple diseases including Alzheimer's disease has been described. Attempts to administer neurotrophins to patients have been reported, but the clinical trials have so far have been hampered by side effects or a lack of clear efficacy.
View Article and Find Full Text PDFThe introduction of anti-amyloid monoclonal antibodies against Alzheimer's disease (AD) is of high importance. However, even though treated patients show very little amyloid pathology, there is only a modest effect on the rate of cognitive decline. Although this effect can possibly increase over time, there is still a need for alternative treatments that will improve cognitive function in patients with AD.
View Article and Find Full Text PDFBackground And Purpose: The cerebrospinal fluid (CSF)/plasma albumin ratio (QAlb) is believed to reflect the integrity of the blood-brain barrier (BBB). Recently, we reported that QAlb is lower in females. This may be important for uptake of neurotoxic 27-hydroxycholesterol (27OH) by the brain in particular because plasma levels of 27OH are higher in males.
View Article and Find Full Text PDFUnlabelled: The insulin-degrading enzyme (IDE) is a metalloendopeptidase with a high affinity for insulin. Human genetic polymorphisms in Ide have been linked to increased risk for T2DM. In mice, hepatic Ide ablation causes glucose intolerance and insulin resistance when mice are fed a regular diet.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most common form of dementia and it is characterized by the deposition of amyloid-β (Aβ) plaques and neurofibrillary tangles in the brain. However, the complete pathogenesis of the disease is still unknown. High level of serum cholesterol has been found to positively correlate with an increased risk of dementia and some studies have reported a decreased prevalence of AD in patients taking cholesterol-lowering drugs.
View Article and Find Full Text PDFIn the presence of aggregation-prone proteins, the cytosol and endoplasmic reticulum (ER) undergo a dramatic shift in their respective redox status, with the cytosol becoming more oxidized and the ER more reducing. However, whether and how changes in the cellular redox status may affect protein aggregation is unknown. Here, we show that C.
View Article and Find Full Text PDFHypercholesterolemia is a risk factor for neurodegenerative diseases, but how high blood cholesterol levels are linked to neurodegeneration is still unknown. Here, we show that an excess of the blood-brain barrier permeable cholesterol metabolite 27-hydroxycholesterol (27-OH) impairs neuronal morphology and reduces hippocampal spine density and the levels of the postsynaptic protein PSD95. Dendritic spines are the main postsynaptic elements of excitatory synapses and are crucial structures for memory and cognition.
View Article and Find Full Text PDFSubcellular distribution of mitochondria in neurons is crucial for meeting the energetic demands, as well as the necessity to buffer Ca within the axon, dendrites and synapses. Mitochondrial impairment is an important feature of Parkinson disease (PD), in which both familial parkinsonism genes DJ-1 and PINK1 have a great impact on mitochondrial function. We used differentiated human dopaminergic neuroblastoma cell lines with stable PINK1 or DJ-1 knockdown to study live motility of mitochondria in neurites.
View Article and Find Full Text PDFGiven sex-related differences in brain disorders, it is of interest to study if there is a sex difference in the permeability of the blood-cerebrospinal fluid barrier (BCSFB) and the blood-brain barrier (BBB). The CSF/serum albumin ratio (Q ) is a standardized biomarker that evaluates the function of these barriers. In previous studies, contradictory results have been reported with respect to sex difference using this quotient, possibly because of small population sizes and heterogeneity with respect to ages.
View Article and Find Full Text PDFInsulin signalling deficiencies and insulin resistance have been directly linked to the progression of neurodegenerative disorders like Alzheimer's disease. However, to date little is known about the underlying molecular mechanisms or insulin state and distribution in the brain under pathological conditions. Here, we report that insulin is accumulated and retained as oligomers in hyperphosphorylated tau-bearing neurons in Alzheimer's disease and in several of the most prevalent human tauopathies.
View Article and Find Full Text PDFSeveral studies demonstrated that Diabetes mellitus (DM) enhances the risk for Alzheimer's disease (AD). Although hyperglycemia and perturbed function of insulin signaling have been proposed to contribute to AD pathogenesis, the molecular mechanisms behind this association is not clear yet. Seladin-1 is an enzyme catalyzing the last step in cholesterol biosynthesis converting desmosterol to cholesterol.
View Article and Find Full Text PDFAnthocyanins are a distinguished class of flavonoids with powerful free radical-scavenging activity that have been suggested as chemotherapeutic agents for the prevention of Alzheimer disease (AD). In this study, we examined the ability of nutraceutical Medox rich in purified cyanidin 3-O-glucoside (C3G), 3-O-b-glucosides and delphinidin 3-O-glucoside (D3G) to counteract mitochondrial deficiency induced by complex I inhibition and/or amyloid-β peptide (Aβ) induced toxicity. SH-SY5Y neuroblastoma cells were stably transfected with APP Swedish K670N/M671L double mutation (APPswe) or with the empty vector and treated with rotenone.
View Article and Find Full Text PDFSerotonin (5-HT) plays a central role in the integrity of different brain functions. The 5-HT homeostasis is regulated by many factors, including serotonin transporter (SERT), monoamine oxidase enzyme (MAO), and several 5-HT receptors, including the 5-HT1B. There is little knowledge how the dynamics of this system is affected by the amyloid-β (Aβ) burden of Alzheimer's disease (AD) pathology.
View Article and Find Full Text PDFJ Gerontol A Biol Sci Med Sci
March 2017
Inflammation plays an important role in Alzheimer's disease (AD) and other neurodegenerative disorders. Although chronic inflammation in later stages of AD is well described, little is known about the inflammatory processes in preclinical or early stages of the disease prior to plaque deposition. In this study, we report that the inflammatory mediator S100A8 is increased with aging in the mouse brain.
View Article and Find Full Text PDFSerotonergic dysfunction is implicated in Alzheimer's disease (AD). In addition, reductions in brain of both monoamine synthesis and release have been reported. Serotonin 1B receptors (5-HT1B), along with serotonin transporter (SERT) are among the regulators of extracellular 5-HT levels.
View Article and Find Full Text PDFNeuropathological symptoms of Alzheimer's disease appear in advances stages, once neuronal damage arises. Nevertheless, recent studies demonstrate that in early asymptomatic stages, ß-amyloid peptide damages the cerebral microvasculature through mechanisms that involve an increase in reactive oxygen species and calcium, which induces necrosis and apoptosis of endothelial cells, leading to cerebrovascular dysfunction. The goal of our work is to study the potential preventive effect of the lipophilic antioxidant coenzyme Q (CoQ) against ß-amyloid-induced damage on human endothelial cells.
View Article and Find Full Text PDFIncreased oxidative stress seems to be a key factor underlying natural processes of aging, but also to occur prior to neuropathological hallmarks of neurodegenerative diseases. The present work studied the temporal variation of three key antioxidant enzymes in cortex and hippocampus during the development of behavioral and cognitive symptoms in 3xTg-AD mice, and as compared to age-matched controls. At 2 months of age, when no intraneuronal Aβ immunoreactivity has been reported, increased neophobia shown as a delayed and reduced rearing, evidenced the onset of BPSD-like symptoms at premorbid stages of disease.
View Article and Find Full Text PDFWe studied ubiquinone (Q), Q homologue ratio, and steady-state levels of mCOQ transcripts in tissues from mice fed ad libitum or under calorie restriction. Maximum ubiquinone levels on a protein basis were found in kidney and heart, followed by liver, brain, and skeletal muscle. Liver and skeletal muscle showed the highest Q(9)/Q(10) ratios with significant interindividual variability.
View Article and Find Full Text PDFThis review focuses on the emerging evidence that attenuation of the production of reactive oxygen species and inhibition of inflammatory pathways play a central role in the antiaging cardiovascular effects of caloric restriction. Particular emphasis is placed on the potential role of the plasma membrane redox system in caloric restriction-induced pathways responsible for sensing oxidative stress and increasing cellular oxidative stress resistance. We propose that caloric restriction increases bioavailability of NO, decreases vascular reactive oxygen species generation, activates the Nrf2/antioxidant response element pathway, inducing reactive oxygen species detoxification systems, exerts antiinflammatory effects, and, thereby, suppresses initiation/progression of vascular disease that accompany aging.
View Article and Find Full Text PDF