Publications by authors named "Cristina Pantoja"

Fasting exerts beneficial effects in mice and humans, including protection from chemotherapy toxicity. To explore the involved mechanisms, we collect blood from humans and mice before and after 36 or 24 hours of fasting, respectively, and measure lipid composition of erythrocyte membranes, circulating micro RNAs (miRNAs), and RNA expression at peripheral blood mononuclear cells (PBMCs). Fasting coordinately affects the proportion of polyunsaturated versus saturated and monounsaturated fatty acids at the erythrocyte membrane; and reduces the expression of insulin signaling-related genes in PBMCs.

View Article and Find Full Text PDF

The p53/p21 pathway is activated in response to cell stress. However, its role in acute lung injury has not been elucidated. Acute lung injury is associated with disruption of the alveolo-capillary barrier leading to acute respiratory distress syndrome (ARDS).

View Article and Find Full Text PDF

Cellular senescence is a damage response aimed to orchestrate tissue repair. We have recently reported that cellular senescence, through the paracrine release of interleukin-6 (IL6) and other soluble factors, strongly favors cellular reprogramming by Oct4, Sox2, Klf4, and c-Myc (OSKM) in nonsenescent cells. Indeed, activation of OSKM in mouse tissues triggers senescence in some cells and reprogramming in other cells, both processes occurring concomitantly and in close proximity.

View Article and Find Full Text PDF

Reprogramming of differentiated cells into pluripotent cells can occur in vivo, but the mechanisms involved remain to be elucidated. Senescence is a cellular response to damage, characterized by abundant production of cytokines and other secreted factors that, together with the recruitment of inflammatory cells, result in tissue remodeling. Here, we show that in vivo expression of the reprogramming factors OCT4, SOX2, KLF4, and cMYC (OSKM) in mice leads to senescence and reprogramming, both coexisting in close proximity.

View Article and Find Full Text PDF

Fasting is a physiological stress that elicits well-known metabolic adaptations, however, little is known about the role of stress-responsive tumor suppressors in fasting. Here, we have examined the expression of several tumor suppressors upon fasting in mice. Interestingly, p21 mRNA is uniquely induced in all the tissues tested, particularly in liver and muscle (>10 fold), and this upregulation is independent of p53.

View Article and Find Full Text PDF

NANOG is a pluripotency transcription factor in embryonic stem cells; however, its role in adult tissues remains largely unexplored. Here we show that mouse NANOG is selectively expressed in stratified epithelia, most notably in the oesophagus where the Nanog promoter is hypomethylated. Interestingly, inducible ubiquitous overexpression of NANOG in mice causes hyperplasia selectively in the oesophagus, in association with increased cell proliferation.

View Article and Find Full Text PDF

Reprogramming of adult cells to generate induced pluripotent stem cells (iPS cells) has opened new therapeutic opportunities; however, little is known about the possibility of in vivo reprogramming within tissues. Here we show that transitory induction of the four factors Oct4, Sox2, Klf4 and c-Myc in mice results in teratomas emerging from multiple organs, implying that full reprogramming can occur in vivo. Analyses of the stomach, intestine, pancreas and kidney reveal groups of dedifferentiated cells that express the pluripotency marker NANOG, indicative of in situ reprogramming.

View Article and Find Full Text PDF

Many genomic alterations associated with human diseases localize in noncoding regulatory elements located far from the promoters they regulate, making it challenging to link noncoding mutations or risk-associated variants with target genes. The range of action of a given set of enhancers is thought to be defined by insulator elements bound by the 11 zinc-finger nuclear factor CCCTC-binding protein (CTCF). Here we analyzed the genomic distribution of CTCF in various human, mouse and chicken cell types, demonstrating the existence of evolutionarily conserved CTCF-bound sites beyond mammals.

View Article and Find Full Text PDF

Sei1 is a positive regulator of proliferation that promotes the assembly of Cdk4-cyclin D complexes and enhances the transcriptional activity of E2f1. The potential oncogenic role of Sei1 is further suggested by its overexpression in various types of human cancers. To study the role of Sei1, we have generated a mouse line deficient for this gene.

View Article and Find Full Text PDF

NO is an important bioactive molecule involved in a variety of physio- and pathological processes, including apoptosis induction. The proapoptotic activity of NO involves the rise in the tumor suppressor p53 and the accumulation and targeting of proapoptotic members of the Bcl-2 family, in particular Bax and the release of cytochrome c from the mitochondria. However, the exact mechanism by which NO induces p53 activation has not been fully elucidated.

View Article and Find Full Text PDF

Cellular proliferation under stressful conditions may result in permanent genetic and epigenetic changes. Using primary mouse embryonic fibroblasts, we have completed a screening test to identify gene expression changes triggered when cells proliferate under stress. In this manner, we have discovered a novel phenomenon that consists of the rapid and coordinated silencing of genes subject to imprinting, including Cdkn1c, Igf2, H19, Ndn1, Grb10, and Meg3.

View Article and Find Full Text PDF

Mammalian genes frequently present allelic variants that differ in their expression levels and that, in the case of tumor suppressor genes, can be of relevance for cancer susceptibility and aging. We report here the characterization of a novel mouse model with increased activity for the Ink4a and Arf tumor suppressors. We have generated a "super Ink4a/Arf" mouse strain carrying a transgenic copy of the entire Ink4a/Arf locus.

View Article and Find Full Text PDF

Deregulation of D-type cyclin-dependent kinases (CDK4 and 6) is widely observed in various human cancers, illustrating their importance in cell cycle control. Like other cyclin-dependent kinases (CDKs), assembly with cyclins is the most critical step for activation of CDK4/6. As previously reported elsewhere, we observed that the level of cyclinD1-CDK4 complex and its associated kinase activity were significantly low in asynchronously proliferating mouse embryo fibroblasts lacking both p21(Cip1) and p27(Kip1) (p21/p27-null MEFs).

View Article and Find Full Text PDF

Liver cells from p21(Cip1-/-) mice subjected to partial hepatectomy (PH) progress into DNA synthesis faster than those from wild-type mice. These cells also show a premature induction of cyclin E/cyclin-dependent kinase (CDK) 2 activity. We studied the mechanisms whereby cells lacking p21(Cip1) showed a premature induction of this activity.

View Article and Find Full Text PDF