Publications by authors named "Cristina Olague"

Hepatitis delta virus (HDV) infection represents the most severe form of human viral hepatitis; however, the mechanisms underlying its pathology remain incompletely understood. We recently developed an HDV mouse model by injecting adeno-associated viral vectors (AAV) containing replication-competent HBV and HDV genomes. This model replicates many features of human infection, including liver injury.

View Article and Find Full Text PDF

Hepatitis D virus (HDV) infection represents the most severe form of chronic viral hepatitis. We have shown that the delivery of HDV replication-competent genomes to the hepatocytes using adeno-associated virus (AAV-HDV) as gene delivery vehicles offers a unique platform to investigate the molecular aspects of HDV and associated liver damage. For the purpose of this study, we generated HDV genomes modified by site-directed mutagenesis aimed to (i) prevent some post-translational modifications of HDV antigens (HDAgs) such as large-HDAg (L-HDAg) isoprenylation or short-HDAg (S-HDAg) phosphorylation; (ii) alter the localization of HDAgs within the subcellular compartments; and (iii) inhibit the right conformation of the delta ribozyme.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates using adeno-associated viral vector (AAV) with paired Staphylococcus aureus nickases (D10ASaCas9) for safely disrupting the Hao1 gene to treat primary hyperoxaluria type 1 (PH1).
  • Results show effective gene disruption without off-target effects, leading to improved therapeutic outcomes in PH1 mice.
  • The research emphasizes the need for better analytical tools to evaluate genetic modifications and suggests this method as a promising long-term treatment option for PH1 patients.
View Article and Find Full Text PDF

Background: The main objective was to evaluate the efficacy of intranasal photodynamic therapy (PDT) in SARS-CoV-2 mildly symptomatic carriers on decreasing the infectivity period. SARS-CoV-2-specific immune-stimulating effects and safety were also analysed.

Methods: We performed a randomized, placebo-controlled, clinical trial in a tertiary hospital (NCT05184205).

View Article and Find Full Text PDF

The enormous societal impact of the ongoing COVID-19 pandemic has been particularly harsh for some social groups, such as the elderly. Recently, it has been suggested that senescent cells could play a central role in pathogenesis by exacerbating the pro-inflammatory immune response against SARS-CoV-2. Therefore, the selective clearance of senescent cells by senolytic drugs may be useful as a therapy to ameliorate the symptoms of COVID-19 in some cases.

View Article and Find Full Text PDF

SARS-CoV-2 is responsible for the COVID-19 pandemic, which has caused almost 570 million infections and over six million deaths worldwide. To help curb its spread, solutions using ultraviolet light (UV) for quick virus inactivation inside buildings without human intervention could be very useful to reduce chances of contagion. The UV dose must be sufficient to inactivate the virus considering the different materials in the room, but it should not be too high, not to degrade the environment.

View Article and Find Full Text PDF

Identification of relevant epitopes is crucial for the development of subunit peptide vaccines inducing neutralizing and cellular immunity against SARS-CoV-2. Our aim was the characterization of epitopes in the receptor-binding domain (RBD) of SARS-CoV-2 spike (S) protein to generate a peptide vaccine. Epitope mapping using a panel of 10 amino acid overlapped 15-mer peptides covering region 401-515 from RBD did not identify linear epitopes when tested with sera from infected individuals or from RBD-immunized mice.

View Article and Find Full Text PDF

Hepatitis delta virus (HDV) infection causes the most severe form of viral hepatitis, but little is known about the molecular mechanisms involved. We have recently developed an HDV mouse model based on the delivery of HDV replication-competent genomes using adeno-associated vectors (AAV), which developed a liver pathology very similar to the human disease and allowed us to perform mechanistic studies. We have generated different AAV-HDV mutants to eliminate the expression of HDV antigens (HDAgs), and we have characterized them both in vitro and in vivo We confirmed that S-HDAg is essential for HDV replication and cannot be replaced by L-HDAg or host cellular proteins, and that L-HDAg is essential to produce the HDV infectious particle and inhibits its replication.

View Article and Find Full Text PDF

Antiviral agents with different mechanisms of action could induce synergistic effects against SARS-CoV-2 infection. Some reports suggest the therapeutic potential of the heme oxygenase-1 (HO-1) enzyme against virus infection. Given that hemin is a natural inducer of the HO-1 gene, the aim of this study was to develop an in vitro assay to analyze the antiviral potency of hemin against SARS-CoV-2 infection.

View Article and Find Full Text PDF

Background & Aims: HDV infection induces the most severe form of human viral hepatitis. However, the specific reasons for the severity of the disease remain unknown. Recently, we developed an HDV replication mouse model in which, for the first time, liver damage was detected.

View Article and Find Full Text PDF

Adeno-associated viruses (AAV) have become one of the most promising tools for gene transfer in clinics. Among all the serotypes, AAV9 has been described as the most efficient for cardiac transduction. In order to achieve optimal therapeutic delivery in heart disease, we have explored AAV9 transduction efficiency in an infarcted heart using different routes of administration and promoters, including a cardiac-specific one.

View Article and Find Full Text PDF

The innate immune system provides a primary line of defense against pathogens. Stimulator of IFN genes (STING), encoded by the TMEM173 gene, is a critical protein involved in IFN-β induction in response to infection by different pathogens. In this study, we describe the expression of three different alternative-spliced human (h) TMEM173 mRNAs producing STING truncated isoforms 1, 2, and 3 in addition to the full-length wild-type (wt) hSTING.

View Article and Find Full Text PDF

CRISPR/Cas9 technology offers novel approaches for the development of new therapies for many unmet clinical needs, including a significant number of inherited monogenic diseases. However, in vivo correction of disease-causing genes is still inefficient, especially for those diseases without selective advantage for corrected cells. We reasoned that substrate reduction therapies (SRT) targeting non-essential enzymes could provide an attractive alternative.

View Article and Find Full Text PDF
Article Synopsis
  • The research presents a new mouse model designed to study hepatitis delta virus (HDV) infection, which closely resembles human disease characteristics.
  • Using adeno-associated viruses, scientists were able to successfully initiate HDV replication in mouse liver cells, evaluate immune responses, and observe liver damage linked to co-infection with hepatitis B virus (HBV).
  • The study highlights the role of the mitochondrial antiviral signaling protein (MAVS) in detecting HDV and underscores the importance of this model for developing new treatments for hepatitis-related diseases.
View Article and Find Full Text PDF

Unlabelled: In chronic hepatitis B (CHB), failure to control hepatitis B virus (HBV) is associated with T cell dysfunction. HBV transgenic mice mirror many features of the human disease, including T cell unresponsiveness, and thus represent an appropriate model in which to test novel therapeutic strategies. To date, the tolerant state of CD8(+) T cells in these animals could be altered only by strong immunogens or by immunization with HBV antigen-pulsed dendritic cells; however, the effectors induced were unable to suppress viral gene expression or replication.

View Article and Find Full Text PDF

Unlabelled: Interleukin-15 (IL-15) is a cell growth-factor that regulates lymphocyte function and homeostasis. Its strong immunostimulatory activity coupled with an apparent lack of toxicity makes IL-15 an exciting candidate for cancer therapy, somehow limited by its short half-life in circulation. To increase IL-15 bioavailability we constructed a recombinant adeno-associated vector expressing murine IL-15 (AAV-mIL15) in the liver.

View Article and Find Full Text PDF

RIG-I-like receptors (RLRs) are cellular sensor proteins that detect certain RNA species produced during viral infections. RLRs activate a signaling cascade that results in the production of IFN-β as well as several other cytokines with antiviral and proinflammatory activities. We explored the potential of different constructs based on RLRs to induce the IFN-β pathway and create an antiviral state in type I IFN-unresponsive models.

View Article and Find Full Text PDF

Interferon-α is a potent antiviral agent and a vigorous adjuvant in the induction of T-cell responses but its use is limited by hematologic toxicity. Interferon-α alters hematopoietic stem cell dormancy and impairs myelocytic and erythrocytic/megakaryocytic differentiation from hematopoietic progenitors. However, the effect of chronic interferon-α exposure on hematopoietic precursors has still not been well characterized.

View Article and Find Full Text PDF

Background & Aims: Adenoviral (Ad) vectors are currently one of the most efficient tools for in vivo gene transfer to the liver. However, anti-Ad immune responses limit the safety and efficacy of these vectors. The initial inflammatory reaction is a concern in terms of toxicity, and it favours the development of cellular and humoral responses leading to short transgene persistence and inefficient vector re-administrations.

View Article and Find Full Text PDF

Acute intermittent porphyria (AIP) results from haplo-insufficient activity of porphobilinogen deaminase (PBGD) and is characterized clinically by life-threatening, acute neurovisceral attacks. To date, liver transplantation is the only curative option for AIP. The aim of the present preclinical nonhuman primate study was to determine the safety and transduction efficacy of an adeno-associated viral vector encoding PBGD (recombinant AAV serotype 5-codon-optimized human porphobilinogen deaminase, rAAV5-cohPBGD) administered intravenously as part of a safety program to start a clinical study in patients with AIP.

View Article and Find Full Text PDF

Recombinant adenoassociated viral vectors (rAAV) have proven to be excellent candidates for gene therapy clinical applications. Recent results showed that cellular immunity to AAV represents a major challenge facing the clinical use of systemic administration of these vectors. Interestingly, no preclinical animal model has previously fully reproduced the clinical findings.

View Article and Find Full Text PDF

Unlabelled: Regulatory T cells (Treg) play a critical role in the modulation of immune responses to viral antigens in chronic viral hepatitis. Woodchucks (Marmota monax) infected with the woodchuck hepatitis virus (WHV) represent the best animal model for chronic hepatitis B virus (HBV) infection. Examination of intrahepatic and peripheral Treg in uninfected and WHV chronically infected woodchucks showed a significant increase of intrahepatic Treg numbers in chronically infected animals, whereas no differences were found in peripheral blood.

View Article and Find Full Text PDF

Background: High-capacity adenoviruses (HC-Ad) hold great promise for the treatment of many diseases. The major drawbacks for the clinical application of this vector concern difficulties with respect to large-scale production, and the absence of standardized methods for production and titration. In the present study, we compare the different methods found in the literature for characterizing HC-Ad production.

View Article and Find Full Text PDF

Woodchucks infected with the woodchuck hepatitis virus (WHV) is the best available animal model for testing the immunotherapeutic effects of dendritic cells (DCs) in the setting of a chronic infection, as woodchucks develop a persistent infection resembling that seen in humans infected with the hepatitis B virus. In the present study, DCs were generated from woodchuck peripheral blood mononuclear cells (wDCs) in the presence of human granulocyte macrophage colony-stimulating factor (hGM-CSF) and human interleukin 4 (hIL-4). After 7 days of culture, cells with morphology similar to DCs were stained positively with a cross-reactive anti-human CD86 antibody.

View Article and Find Full Text PDF