is an emerging zoonosis and widely distributed veterinary infection caused by 100+ species of parasites. The diversity of parasites and the lack of specific drugs necessitate the discovery of broadly effective antibabesials. Here, we describe a comparative chemogenomics (CCG) pipeline for the identification of conserved targets.
View Article and Find Full Text PDFUnlabelled: is an emerging zoonosis and widely distributed veterinary infection caused by 100+ species of parasites. The diversity of parasites, coupled with the lack of potent inhibitors necessitates the discovery of novel conserved druggable targets for the generation of broadly effective antibabesials. Here, we describe a comparative chemogenomics (CCG) pipeline for the identification of novel and conserved targets.
View Article and Find Full Text PDFApicomplexan egress from host cells is fundamental to the spread of infection and is poorly characterized in spp., parasites of veterinary importance and emerging zoonoses. Through the use of video microscopy, transcriptomics and chemical genetics, we have implicated signaling, proteases and gliding motility as key drivers of egress by .
View Article and Find Full Text PDFBackground: Cytoplasmic male sterility (CMS) is a maternally inherited failure to produce functional pollen that most commonly results from expression of novel, chimeric mitochondrial genes. In Zea mays, cytoplasmic male sterility type S (CMS-S) is characterized by the collapse of immature, bi-cellular pollen. Molecular and cellular features of developing CMS-S and normal (N) cytoplasm pollen were compared to determine the role of mitochondria in these differing developmental fates.
View Article and Find Full Text PDFAntimicrob Agents Chemother
August 2016
The apicomplexan parasites that cause malaria and babesiosis invade and proliferate within erythrocytes. To assess the potential for common antiparasitic treatments, we measured the sensitivities of multiple species of Plasmodium and Babesia parasites to the chemically diverse collection of antimalarial compounds in the Malaria Box library. We observed that these parasites share sensitivities to a large fraction of the same inhibitors and we identified compounds with strong babesiacidal activity.
View Article and Find Full Text PDFThe phist gene family has members identified across the Plasmodium genus, defined by the presence of a domain of roughly 150 amino acids having conserved aromatic residues and an all alpha-helical structure. The family is highly amplified in P. falciparum, with 65 predicted genes in the genome of the 3D7 isolate.
View Article and Find Full Text PDFBackground: While the causes of falls in old hospitalized patients are multifactorial, medication has been considered as one of the most significant factors. Given the large impact that this phenomenon has on the lives of the elderly and organizations, it is important to explore such phenomenon in greater depth.
Objective: The objective of this study was to explore the association between medication and falls and the recurrent falls (n≥2), and identify medication related risk for fall in hospitalized patients, in a large acute hospital.
Real-time polymerase chain reaction (PCR), or quantitative PCR (qPCR), is a rapid, sensitive, and specific method used for a broad variety of applications including quantitative gene expression analysis, DNA copy number measurement, characterization of gene and chromosomal deletions, and genotyping. Real-time reverse transcription (RT)-PCR has largely supplanted Northern blot and RNase protection assays, as two examples, as a means of quantifying transcript levels. The method utilizes small amounts of RNA and allows efficient screening of a large number of samples.
View Article and Find Full Text PDFPollution caused by the electromagnetic fields (EMFs) of radio frequencies (RF) generated by the telecommunication system is one of the greatest environmental problems of the twentieth century. The purpose of this research was to verify the existence of a spatial correlation between base station (BS) clusters and cases of deaths by neoplasia in the Belo Horizonte municipality, Minas Gerais state, Brazil, from 1996 to 2006 and to measure the human exposure levels to EMF where there is a major concentration of cellular telephone transmitter antennas. A descriptive spatial analysis of the BSs and the cases of death by neoplasia identified in the municipality was performed through an ecological-epidemiological approach, using georeferencing.
View Article and Find Full Text PDFIn the present study, the full-length cDNA sequences of PSY, PDS, and ZDS, encoding the early carotenoid biosynthetic enzymes in the carotenoid pathway of grapefruit (Citrus paradisi), were isolated and characterized for the first time. CpPSY contained a 1311-bp open reading frame (ORF) encoding a polypeptide of 436 amino acids, CpPDS contained a 1659-bp ORF encoding a polypeptide of 552 amino acids, and CpZDS contained a 1713-bp ORF encoding a polypeptide of 570 amino acids. Phylogenetic analysis indicated that CpPSY shares homology with PSYs from Citrus, tomato, pepper, Arabidopsis, and the monocot PSY1 group, while CpPDS and CpZDS are most closely related to orthologs from Citrus and tomato.
View Article and Find Full Text PDFThe sexual phase of the malaria parasite Plasmodium falciparum is accompanied by the coordinated expression of stage-specific adhesive proteins. Among these are six secreted proteins with multiple adhesion domains, termed P. falciparum LCCL domain-containing protein (PfCCp) proteins, which are expressed in the parasitophorous vacuole of the differentiating gametocytes and which are later associated with macrogametes.
View Article and Find Full Text PDFThe invasive stages of parasites of the protozoan phylum Apicomplexa have the capacity to traverse host tissues and invade host cells using a unique type of locomotion called gliding motility. Gliding motility is powered by a sub-membranous actin-myosin motor, and the force generated by the motor is transduced to the parasite surface by transmembrane proteins of the apicomplexan-specific thrombospondin-related anonymous protein (TRAP) family. These proteins possess short cytoplasmic tails that interact with the actin-myosin motor via the glycolytic enzyme aldolase.
View Article and Find Full Text PDFPlasmodium encodes a family of six secreted multi-domain adhesive proteins, termed PCCps, which are released from gametocytes during emergence within the mosquito midgut. The expression and cellular localization of PCCp proteins predict a role either in gametocyte development or within the mosquito midgut during the transition from gametes into the ookinete stage. However, mutant parasites lacking expression of any single PCCp protein show a phenotype at the oocyst stage with a failure of oocyst maturation and sporozoite formation.
View Article and Find Full Text PDFIn the apicomplexan protozoans motility and cell invasion are mediated by the TRAP/MIC2 family of transmembrane proteins, members of which link extracellular adhesion to the intracellular actomyosin motor complex. Here we characterize a new member of the TRAP/MIC2 family, named TRAP-Like Protein (TLP), that is highly conserved within the Plasmodium genus. Similar to the Plasmodium sporozoite protein, TRAP, and the ookinete protein, CTRP, TLP possesses an extracellular domain architecture that is comprised of von Willebrand factor A (vWA) and thrombospondin type 1 (TSP1) domains, plus a short cytoplasmic domain.
View Article and Find Full Text PDFWhile seeking strategies for interfering with Plasmodium development in vertebrate/invertebrate hosts, we tested the activity of gomesin, an antimicrobial peptide isolated from the hemocytes of the spider Acanthoscurria gomesiana. Gomesin was tested against asexual, sexual and pre-sporogonic forms of Plasmodium falciparum and Plasmodium berghei parasites. The peptide inhibited the in vitro growth of intraerythrocytic forms of P.
View Article and Find Full Text PDFBacteria capable of colonizing mosquito midguts are attractive vehicles for delivering anti-malaria molecules. We genetically engineered Escherichia coli to display two anti-Plasmodium effector molecules, SM1 and phospholipase-A(2), on their outer membrane. Both molecules significantly inhibited Plasmodium berghei development when engineered bacteria were fed to mosquitoes 24h prior to an infective bloodmeal (SM1=41%, PLA2=23%).
View Article and Find Full Text PDFThe generation of transgenic mosquitoes with a minimal fitness load is a prerequisite for the success of strategies for controlling mosquito-borne diseases using transgenic insects. It is important to assemble as much information as possible on this subject because realistic estimates of transgene fitness costs are essential for modeling and planning release strategies. Transgenic mosquitoes must have minimal fitness costs, because such costs would reduce the effectiveness of the genetic drive mechanisms that are used to introduce the transgenes into field mosquito populations.
View Article and Find Full Text PDFBackground: Developing monocots that accumulate more vegetative tissue protein is one strategy for improving nitrogen-sequestration and nutritive value of forage and silage crops. In soybeans (a dicotyledonous legume), the vspA and B genes encode subunits of a dimeric vegetative storage protein that plays an important role in nitrogen storage in vegetative tissues. Similar genes are found in monocots; however, they do not accumulate in leaves as storage proteins, and the ability of monocot leaves to support accumulation of an ectopically expressed soybean VSP is in question.
View Article and Find Full Text PDFMalaria kills millions of people every year, yet there has been little progress in controlling this disease. For transmission to occur, the malaria parasite has to complete a complex developmental cycle in the mosquito. The mosquito is therefore a potential weak link in malaria transmission, and generating mosquito populations that are refractory to the parasite is a potential means of controlling the disease.
View Article and Find Full Text PDF