Publications by authors named "Cristina Molnar"

Article Synopsis
  • wing sarcoma (EwS) is a cancer linked to the EWS-FLI oncogene, which makes it challenging to create animal models due to its high toxicity.* *Researchers have created a new model using a less toxic variant of EWS-FLI, allowing them to study its functions in depth.* *Findings show that the upregulation of transcription linked to specific genetic sequences (GGAA-microsatellites) is related to EWS-FLI levels, revealing different response patterns in gene regulation based on EWS-FLI concentration.*
View Article and Find Full Text PDF

Expression of the Drosophila cancer-germline (CG), X-linked, head-to-head gene pair TrxT and dhd is normally germline-specific but becomes upregulated in brain tumours caused by mutation in l(3)mbt. Here, we show that TrxT and dhd play a major synergistic role in the emergence of l(3)mbt tumour-linked transcriptomic signatures and tumour development, which is remarkable, taking into account that these two genes are never expressed together under normal conditions. We also show that TrxT, but not dhd, is crucial for the growth of l(3)mbt allografts, hence suggesting that the initial stages of tumour development and long-term tumour growth may depend on different molecular pathways.

View Article and Find Full Text PDF

Ewing sarcoma (EwS) is a human malignant tumor typically driven by the Ewing sarcoma-Friend leukemia integration (EWS-FLI) fusion protein. A paucity of genetically modified animal models, partially owed to the high toxicity of EWS-FLI, hinders research on EwS. Here, we report a spontaneous mutant variant, EWS-FLI, that circumvents the toxicity issue in Drosophila.

View Article and Find Full Text PDF

The loss-of-function conditions for an () in larvae reared at 29 °C results in malignant brain tumours and hyperplastic imaginal discs. Unlike the former that have been extensively characterised, little is known about the latter. Here we report the results of a study of the hyperplastic mutant wing imaginal discs.

View Article and Find Full Text PDF

We have screened a collection of UAS-RNAi lines targeting 10,920 Drosophila protein-coding genes for phenotypes in the adult wing. We identified 3653 genes (33%) whose knockdown causes either larval/pupal lethality or a mutant phenotype affecting the formation of a normal wing. The most frequent phenotypes consist of changes in wing size, vein differentiation, and patterning, defects in the wing margin and in the apposition of the dorsal and ventral wing surfaces.

View Article and Find Full Text PDF

The Drosophila genome contains approximately 14,000 protein-coding genes encoding all the necessary information to sustain cellular physiology, tissue organization, organism development, and behavior. In this manuscript, we describe in some detail the phenotypes in the adult fly wing generated after knockdown of approximately 80% of Drosophila genes. We combined this phenotypic description with a comprehensive molecular classification of the Drosophila proteins into classes that summarize the main expected or known biochemical/functional aspect of each protein.

View Article and Find Full Text PDF

Activation of Ras signaling occurs in ~30% of human cancers. However, activated Ras alone is insufficient to produce malignancy. Thus, it is imperative to identify those genes cooperating with activated Ras in driving tumoral growth.

View Article and Find Full Text PDF

We have undertaken a study towards understanding the effect of ectopic expression of testis proteins in the soma in Drosophila. Here, we show that in the larval neuroepithelium, ectopic expression of the germline-specific component of the inner mitochondrial translocation complex () brings about cell autonomous hyperplasia and extension of G2 phase. In the wing discs, cells expressing ectopic upregulate Jun N-terminal kinase (JNK) signaling, present extended G2, become invasive, and elicit non-cell autonomous G2 extension and overgrowth of the wild-type neighboring tissue.

View Article and Find Full Text PDF

Ras1 (Ras85D) and Ras2 (Ras64B) are the Drosophila orthologs of human H-Ras/N-Ras/K-Ras and R-Ras1-3 genes, respectively. The function of Ras1 has been thoroughly characterised during Drosophila embryonic and imaginal development, and it is associated with coupling activated trans-membrane receptors with tyrosine kinase activity to their downstream effectors. In this capacity, Ras1 binds and is required for the activation of Raf.

View Article and Find Full Text PDF

Background And Aims: The purpose of the study is to evaluate through a FEM (Finite Element Method) the effects of the rotation movement upon a complex structure (enamel- pulp -alveolar bone, PDL), for external load.

Method: The progressive action of a fixed orthodontic device on three teeth: first molar, first and second premolar is modeled and simulated with the components placed on the buccal and palatal surfaces of the tooth. For the reproduction of a situation similar to the real one, the loading of the model was performed through a nodal force applied at a height of the crown, of various amplitudes, F = 1 N; 2, 3 and 4 N.

View Article and Find Full Text PDF

The notable male predominance across many human cancer types remains unexplained. Here, we show that l(3)mbt brain tumors are more invasive and develop as malignant neoplasms more often in males than in females. By quantitative proteomics, we have identified a signature of proteins that are differentially expressed between male and female tumor samples.

View Article and Find Full Text PDF

Using transgenic RNAi technology, we have screened over 4000 genes to identify targets to inhibit malignant growth caused by the loss of function of in We have identified 131 targets, which belong to a wide range of gene ontologies. Most of these target genes are not significantly overexpressed in mbt tumours hence showing that, rather counterintuitively, tumour-linked overexpression is not a good predictor of functional requirement. Moreover, we have found that most of the genes upregulated in mbt tumours remain overexpressed in tumour-suppressed double-mutant conditions, hence revealing that most of the tumour transcriptome signature is not necessarily correlated with malignant growth.

View Article and Find Full Text PDF

The regulation of Extracellular regulated kinase (Erk) activity is a key aspect of signalling by pathways activated by extracellular ligands acting through tyrosine kinase transmembrane receptors. In this process, participate proteins with kinase activity that phosphorylate and activate Erk, as well as different phosphatases that inactivate Erk by de-phosphorylation. The state of Erk phosphorylation affects not only its activity, but also its subcellular localization, defining the repertoire of Erk target proteins, and consequently, the cellular response to Erk.

View Article and Find Full Text PDF

Gain-of-function screens in Drosophila are an effective method with which to identify genes that affect the development of particular structures or cell types. It has been found that a fraction of 2-10% of the genes tested, depending on the particularities of the screen, results in a discernible phenotype when overexpressed. However, it is not clear to what extent a gain-of-function phenotype generated by overexpression is informative about the normal function of the gene.

View Article and Find Full Text PDF

The non-visual ß-arrestins are cytosolic proteins highly conserved across species that participate in a variety of signalling events, including plasma membrane receptor degradation, recycling, and signalling, and that can also act as scaffolding for kinases such as MAPK and Akt/PI3K. In Drosophila melanogaster, there is only a single non-visual ß-arrestin, encoded by kurtz, whose function is essential for neuronal activity. We have addressed the participation of Kurtz in signalling during the development of the imaginal discs, epithelial tissues requiring the activity of the Hedgehog, Wingless, EGFR, Notch, Insulin, and TGFβ pathways.

View Article and Find Full Text PDF

The development of the Drosophila melanogaster wing depends on its subdivision into anterior and posterior compartments, which constitute two independent cell lineages since their origin in the embryonic ectoderm. The anterior-posterior compartment boundary is the place where signaling by the Hedgehog pathway takes place, and this requires pathway activation in anterior cells by ligand expressed exclusively in posterior cells. Several mechanisms ensure the confinement of hedgehog expression to posterior cells, including repression by Cubitus interruptus, the co-repressor Groucho and Master of thick veins.

View Article and Find Full Text PDF

Dorsal closure (DC) of the Drosophila embryo is a model for the study of wound healing and developmental epithelial fusions, and involves the sealing of a hole in the epidermis through the migration of the epidermal flanks over the tissue occupying the hole, the amnioserosa. During DC, the cells at the edge of the migrating epidermis extend Rac- and Cdc42-dependent actin-based lamellipodia and filopodia from their leading edge (LE), which exhibits a breakdown in apicobasal polarity as adhesions are severed with the neighbouring amnioserosa cells. Studies using mammalian cells have demonstrated that Scribble (Scrib), an important determinant of apicobasal polarity that functions in a protein complex, controls polarized cell migration through recruitment of Rac, Cdc42 and the serine/threonine kinase Pak, an effector for Rac and Cdc42, to the LE.

View Article and Find Full Text PDF

Gain of function screens have being frequently used to search for genes affecting a particular adult character or developmental process. These experiments are made possible by the adoption of the Gal4/UAS system to flies, and by the design of P elements bearing UAS sequences. We recently published two screens in which a large number of newly generated P-UAS insertions were crossed with Gal4 drivers expressed in the pupal veins and in the central region of the wing disc.

View Article and Find Full Text PDF

Laminins are heterotrimeric molecules found in all basement membranes. In mammals, they have been involved in diverse developmental processes, from gastrulation to tissue maintenance. The Drosophila genome encodes two laminin alpha chains, one beta and one Gamma, which form two distinct laminin trimers.

View Article and Find Full Text PDF

Cell division rates and apoptosis sculpt the growing organs, and its regulation implements the developmental programmes that define organ size and shape. The balance between oncogenes and tumour suppressors modulate the cell cycle and the apoptotic machinery to achieve this goal, promoting and restricting proliferation or, in certain conditions, inducing the apoptotic programme. Analysis of human cancer cells with mutation in AXIN gene has uncovered the potential function of AXUD1 as a tumour suppressor.

View Article and Find Full Text PDF

Signaling by Smoothened (Smo) plays fundamental roles during animal development and is deregulated in a variety of human cancers. Smo is a transmembrane protein with a heptahelical topology characteristic of G protein-coupled receptors. Despite such similarity, the mechanisms regulating Smo signaling are not fully understood.

View Article and Find Full Text PDF

The Smoothened (Smo) signalling pathway participates in many developmental processes, contributing to the regulation of gene expression by controlling the activity of transcription factors belonging to the Gli family. The key elements of the pathway were identified by means of genetic screens carried out in Drosophila, and subsequent analysis in other model organisms revealed a high degree of conservation in both the proteins involved and in their molecular interactions. Recent analysis of the pathway, using a combination of biochemical and cell biological approaches, is uncovering the intricacies of Smo signalling, placing its elements in particular cellular compartments and qualifying the molecular processes involved.

View Article and Find Full Text PDF

The formation of the Drosophila wing involves developmental processes such as cell proliferation, pattern formation, and cell differentiation that are common to all multicellular organisms. The genes controlling these cellular behaviors are conserved throughout the animal kingdom, and the genetic analysis of wing development has been instrumental in their identification and functional characterization. The wing is a postembryonic structure, and most loss-of-function mutations are lethal in homozygous flies before metamorphosis.

View Article and Find Full Text PDF

The three ERM proteins (Ezrin, Radixin and Moesin) form a conserved family required in many developmental processes involving regulation of the cytoskeleton. In general, the molecular function of ERM proteins is to link specific membrane proteins to the actin cytoskeleton. In Drosophila, loss of moesin (moe) activity causes incorrect localisation of maternal determinants during oogenesis, failures in rhabdomere differentiation in the eye and alterations of epithelial integrity in the wing imaginal disc.

View Article and Find Full Text PDF

The extracellular signal-regulated kinase (ERK) is a key transducer of the epidermal growth factor receptor (EGFR) and fibroblast growth factor receptor (FGFR) signaling pathways, and its function is required in multiple processes during animal development. The activity of ERK depends on the phosphorylation state of conserved threonine and tyrosine residues, and this state is regulated by different kinases and phosphatases. A family of phosphatases with specificity toward both threonine and tyrosine residues in ERK (dual-specificity phosphatases) play a conserved role in its dephosphorylation and consequent inactivation.

View Article and Find Full Text PDF