Publications by authors named "Cristina Modrogan"

For a given aquatic ecosystem that will be used as a water source, it is necessary to establish the quality of the water from a microbiological point of view by identifying the pathogens present in the water. The aim of this study was to determine and analyze the antimicrobial activity of some biocides derived from garlic (garlic-methanol extract) and lavender (lavender-water extract). Their efficiency was evaluated at different concentrations and contact times.

View Article and Find Full Text PDF

The main objectives of this present paper were to indicate the immobilization of nano zerovalent iron (nZVI) onto a polymeric material (Purolite A400) and the synthesis of the polymeric material (A400-nZVI) through sodium borohydride (NaBH4) reduction. The obtained polymeric material (A400-nZVI) was used for the nitrate ions removal from a simulated groundwater at different conditions. The polymeric materials, without and with nano zerovalent iron (A400 and A400-nZVI), were characterized trough the FTIR, SEM-EDAX, XRD, and TGA analysis.

View Article and Find Full Text PDF

The goal of the present paper was to synthesize, characterize, and evaluate the performance of the modified composite based on magnetite (FeO) and polyvinyl alcohol (PVA). The obtained composite was used to degrade Methyl Orange dye from synthetic wastewater by a laboratory photocatalytic reactor. Various parameters of the photodegradation process were tested: composite dosage, amount of hydrogen peroxide (HO), and pH.

View Article and Find Full Text PDF

The main goal of the present paper was to synthesize the polyvinyl alcohol-SiO nanoparticles polymeric membrane by wet-phase inversion method. The efficiency of prepared membranes (without and with SiO) was investigated using a versatile laboratory electrodialysis system filled with simulated wastewaters that contain zinc ions. All experiments were performed at following conditions: the applied voltage at electrodes of 5, 10 and 15 V, a concentration of zinc ions solution of 2 g L, time for each test of 1 h and at room temperature.

View Article and Find Full Text PDF

Magnesium-aluminum (Mg-Al) and magnesium-aluminum-nickel (Mg-Al-Ni) layered double hydroxides (LDHs) were synthesized by the co-precipitation method. The adsorption process of Mn from synthetic wastewater was investigated. Formation of the layered double hydroxides and adsorption of Mn on both Mg-Al and Mg-Ni-Al LDHs were observed by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectrometry (EDX) analysis.

View Article and Find Full Text PDF

The present paper synthesized, characterized, and evaluated the performance of the novel biopolymeric membrane enriched with cellulose acetate and chitosan (CHI)-silver (Ag) ions in order to remove iron ion from the synthetic wastewater using a new electrodialysis system. The prepared membranes were characterized by Fourier Transforms Infrared Spectroscopy-Attenuated Total Reflection (FTIR-ATR), Thermal Gravimetric Analysis (TGA) and Differential Thermal Analysis (DSC), contact angle measurements, microscopy studies, and electrochemical impedance spectroscopy (EIS). The electrodialysis experiments were performed at the different applied voltages (5, 10, and 15 V) for one hour, at room temperature.

View Article and Find Full Text PDF

A novel hydrogel composite based on gellan gum and graphene oxide (GG/GO) was synthesized, characterized and tested for sorption capacity in this work. The microstructural, thermogravimetric and spectroscopic analysis confirmed the formation of the GG/GO composite. Comparative batch sorption experiments revealed a sorption capacity of the GG/GO composite for Zn (II) ions of approximately 2.

View Article and Find Full Text PDF