Gut microbiota regulates various aspects of human physiology by producing metabolites, metabolizing enzymes, and toxins. Many studies have linked microbiota with human health and altered microbiome configurations with the occurrence of several diseases, including cancer. Accumulating evidence suggests that the microbiome can influence the initiation and progression of several cancers.
View Article and Find Full Text PDFThe poor efficacy of chimeric antigen receptor T-cell therapy (CAR T) for solid tumors is due to insufficient CAR T cell tumor infiltration, in vivo expansion, persistence, and effector function, as well as exhaustion, intrinsic target antigen heterogeneity or antigen loss of target cancer cells, and immunosuppressive tumor microenvironment (TME). Here we describe a broadly applicable nongenetic approach that simultaneously addresses the multiple challenges of CAR T as a therapy for solid tumors. The approach reprograms CAR T cells by exposing them to stressed target cancer cells which have been exposed to the cell stress inducer disulfiram (DSF) and copper (Cu)(DSF/Cu) plus ionizing irradiation (IR).
View Article and Find Full Text PDFBackground: The mechanism of tumor immune escape and progression in colorectal cancer (CRC) is widely investigated in-vitro to help understand and identify agents that might play a crucial role in response to treatment and improve the overall survival of CRC patients. Several mechanisms of immune escape and tumor progression, including expression of stemness markers, inactivation of immunoregulatory genes by methylation, and epigenetic silencing, have been reported in CRC, indicating the potential of demethylating agents as anti-cancer drugs. Of these, a chemotherapeutic demethylating agent, Decitabine (DAC), has been reported to induce a dual effect on both DNA demethylation and histone changes leading to an increased expression of target biomarkers, thus making it an attractive anti-tumorigenic drug.
View Article and Find Full Text PDFIn the last decade, Chimeric Antigen Receptor (CAR)-T cell therapy has emerged as a promising immunotherapeutic approach to fight cancers. This approach consists of genetically engineered immune cells expressing a surface receptor, called CAR, that specifically targets antigens expressed on the surface of tumor cells. In hematological malignancies like leukemias, myeloma, and non-Hodgkin B-cell lymphomas, adoptive CAR-T cell therapy has shown efficacy in treating chemotherapy refractory patients.
View Article and Find Full Text PDFTechnol Cancer Res Treat
November 2022
The gene expression analysis of formalin-fixed paraffin-embedded (FFPE) tissues is often hampered by poor RNA quality, which results from the oxidation, cross-linking and other chemical modifications induced by the inclusion in paraffin. Yet, FFPE samples are a valuable source for molecular studies and can provide great insights into disease progression and prognosis. With the advancement of genomic technologies, new methods have been established that offer reliable and accurate gene expression workflows on samples of poor quality.
View Article and Find Full Text PDFThe scope of this study is to show that DM in a LRBA-deficient patient with a stop codon mutation (c.3999 G > A) was not mediated through autoimmunity. We have evaluated the ability of the proband’s T cells to be activated by assessing their CTLA-4 expression.
View Article and Find Full Text PDFCancer cells endowed with stemness properties and representing a rare population of cells within malignant lesions have been isolated from tumors with different histological origins. These cells, denominated as cancer stem cells (CSCs) or cancer initiating cells (CICs), are responsible for tumor initiation, progression and resistance to therapies, including immunotherapy. The dynamic crosstalk of CSCs/CICs with the tumor microenvironment orchestrates their fate and plasticity as well as their immunogenicity.
View Article and Find Full Text PDFGlioblastoma (GBM) represents the most common and aggressive tumor of the brain. Despite the fact that several studies have recently addressed the molecular mechanisms underlying the disease, its etiology and pathogenesis are still poorly understood. GBM displays poor prognosis and its resistance to common therapeutic approaches makes it a highly recurrent tumor.
View Article and Find Full Text PDFFront Immunol
July 2021
The progress in the isolation and characterization of tumor antigen (TA)-specific T lymphocytes and in the genetic modification of immune cells allowed the clinical development of adoptive cell therapy (ACT). Several clinical studies highlighted the striking clinical activity of T cells engineered to express either Chimeric Antigen (CAR) or T Cell (TCR) Receptors to target molecularly defined antigens expressed on tumor cells. The breakthrough of immunotherapy is represented by the approval of CAR-T cells specific for advanced or refractory CD19 B cell malignancies by both the Food and Drug Administration (FDA) and the European Medicinal Agency (EMA).
View Article and Find Full Text PDFSince the publication of the Society for Immunotherapy of Cancer's (SITC) original cancer immunotherapy biomarkers resource document, there have been remarkable breakthroughs in cancer immunotherapy, in particular the development and approval of immune checkpoint inhibitors, engineered cellular therapies, and tumor vaccines to unleash antitumor immune activity. The most notable feature of these breakthroughs is the achievement of durable clinical responses in some patients, enabling long-term survival. These durable responses have been noted in tumor types that were not previously considered immunotherapy-sensitive, suggesting that all patients with cancer may have the potential to benefit from immunotherapy.
View Article and Find Full Text PDFAdvances in the genomic, molecular and immunological make-up of melanoma allowed the development of novel targeted therapy and of immunotherapy, leading to changes in the paradigm of therapeutic interventions and improvement of patients' overall survival. Nevertheless, the mechanisms regulating either the responsiveness or the resistance of melanoma patients to therapies are still mostly unknown. The development of either the combinations or of the sequential treatment of different agents has been investigated but without a strongly molecularly motivated rationale.
View Article and Find Full Text PDFChimeric Antigen Receptor-T cells (CAR-T) are considered novel biological agents, designed to selectively attack cancer cells expressing specific antigens, with demonstrated clinical activity in patients affected with relapsed/refractory B-cell malignancies. In consideration of their complexity, the use of CAR-T requires dedicated clinical setting and health care practitioners with expertise in the selection, treatment, and management of toxicities and side effects. Such issue appears particularly important when contextualized in the rapid progress of CAR-T cell treatment, translating into a constant need of updating and evolution.
View Article and Find Full Text PDFPurpose: Approximately 30% of patients with chronic lymphocytic leukemia (CLL) can be grouped into subsets with stereotyped B-cell receptor immunoglobulin (BcR IG) displaying remarkable similarity in the heavy complementarity-determining region 3 (VH CDR3). Here, we investigated whether the consensus VH CDR3 sequences from CLL stereotyped subsets can be exploited for immunotherapy approaches.
Experimental Design: Immunogenic epitopes from the consensus VH CDR3 sequence of the clinically aggressive subsets #1 and #2 and from Eμ-TCL1 mice, which spontaneously develop CLL with BcR IG stereotypy, were identified and used to generate specific HLA class I- and II-restricted T cells .
Tumors employ strategies to escape immune control. The principle aim of most cancer immunotherapies is to restore effective immune surveillance. Among the different processes regulating immune escape, tumor microenvironment-associated soluble factors, and/or cell surface-bound molecules are mostly responsible for dysfunctional activity of tumor-specific CD8T cells.
View Article and Find Full Text PDFCancer Stem Cells/Cancer Initiating Cells (CSCs/CICs) is a rare sub-population within a tumor that is responsible for tumor formation, progression and resistance to therapies. The interaction between CSCs/CICs and tumor microenvironment (TME) can sustain "stemness" properties and promote their survival and plasticity. This cross-talk is also pivotal in regulating and modulating CSC/CIC properties.
View Article and Find Full Text PDFNew technologies and therapies designed to facilitate development of personalized treatments are rapidly emerging in the field of biomedicine. Strikingly, the goal of personalized medicine refined the concept of therapy by developing cell-based therapies, the so-called "living drugs". Breakthrough advancements were achieved in this regard in the fields of gene therapy, cell therapy, tissue-engineered products and advanced therapeutic techniques.
View Article and Find Full Text PDFTumor lesions comprise multiple subpopulations of cells including those endowed with "stemness" properties. The latter cells are responsible of tumor initiation, metastasis formation, resistance to conventional therapies and disease recurrence. These relatively rare cells denominated cancer stem cells (CSCs) or cancer initiating cells (CICs) are defined based on self-renewing, multipotency and tumorigenicity.
View Article and Find Full Text PDFThe recent advances in immunotherapy and the availability of novel drugs to target the tumor microenvironment have dramatically changed the paradigm of cancer treatment. Nevertheless, a significant proportion of cancer patients are unresponsive or develop resistance to these treatments. With the aim to increase the clinical efficacy of immunotherapy, combinations of agents and standard therapies with complementary actions have been developed mostly on an empirical base, since their mechanisms of actions are not yet fully dissected.
View Article and Find Full Text PDFExpert Opin Biol Ther
July 2018
Introduction: Cancer vaccines represent one of the oldest immunotherapy strategies. A variety of tumor-associated antigens have been exploited to investigate their immunogenicity as well as multiple strategies for vaccine administration. These efforts have led to the development of several clinical trials in tumors with different histological origins to test the clinical efficacy of cancer vaccines.
View Article and Find Full Text PDFThe increased application of high-throughput approaches in translational research has expanded the number of publicly available data repositories. Gathering additional valuable information contained in the datasets represents a crucial opportunity in the biomedical field. To facilitate and stimulate utilization of these datasets, we have recently developed an interactive data browsing and visualization web application, the Gene Expression Browser (GXB).
View Article and Find Full Text PDFThe immune system has a substantial effect on colorectal cancer (CRC) progression. Additionally, the response to immunotherapeutics and conventional treatment options (e.g.
View Article and Find Full Text PDF