Reaction mixtures of reactive carbonyls and creatinine were submitted to high temperature and studied to identify the reactive carbonyl(s) responsible for 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) formation. MeIQx was produced by reaction of acrolein and creatinine within a wide pH range and with an activation energy of 81.1 ± 1.
View Article and Find Full Text PDFFood processing is responsible for the destruction of some health hazards, but it is responsible for the formation of new ones. Among them, the formation of heterocyclic aromatic amines (HAAs) has received a considerable attention because of their carcinogenicity. In spite of this, HAA formation is still poorly understood.
View Article and Find Full Text PDFPyridines are produced during food processing and are important flavor compounds. In spite of that, their formation pathways are still poorly understood, in particular those related to 3-hydroxypyridines. In an attempt to fill this gap, this study describes, for the first time, precursors and reaction pathways leading to 3-hydroxypyridine formation.
View Article and Find Full Text PDFReactions involving reactive carbonyls, creatinine, and ammonia-producing compounds were investigated in order to clarify the formation of the heterocyclic aromatic amine (HAA) 2-amino-3,4-dimethylimidazo(4,5-f)quinoline (MeIQ). Obtained results showed that MeIQ was only produced when 2-butenal (crotonaldehyde) was present. Reaction yields depended on the pH, with a maximum around pH 6.
View Article and Find Full Text PDFThe formation of 6-(hydroxymethyl)pyridin-3-ol by ring expansion of 5-(hydroxymethyl)furfural (HMF) in the presence of ammonia-producing compounds was studied to determine the routes of formation of pyridin-3-ols in foods. 6-(Hydroxymethyl)pyridin-3-ol was produced from HMF in model systems, mostly at neutral pH values, as a function of reaction times and temperature and with an activation energy () of 74 ± 3 kJ/mol, which was higher than that of HMF disappearance (43 ± 4 kJ/mol). A reaction pathway is proposed, which is general for the formation of pyridin-3-ols from 2-oxofurans.
View Article and Find Full Text PDFThe reactions of different lipid-derived reactive carbonyls with ammonia-producing compounds were studied to investigate the formation of pyridines in foods. 2-Alkyl, 3-alkyl-, and 2,5-dialkylpyiridines were produced by oligomerization of short-chain aldehydes in the presence of ammonia. Thus, acetaldehyde/crotonaldehyde mixtures and 2,4-alkadienals were the main responsible for the formation of 2-alkylpyridines; acrolein or 2,4-alkadienals were needed for the formation of 3-alkylpyridines; and 2-alkenals were responsible for the formation of 2,5-dialkylpyridines.
View Article and Find Full Text PDF