Publications by authors named "Cristina Lopez Rodriguez"

Hematopoietic stem cells (HSCs) readily recover from acute stress, but persistent stress can reduce their viability and long-term potential. Here, we show that the nuclear factor of activated T cells 5 (NFAT5), a transcription modulator of inflammatory responses, protects the HSC pool under stress. NFAT5 restrains HSC differentiation to multipotent progenitors after bone marrow transplantation and bone marrow ablation with ionizing radiation or chemotherapy.

View Article and Find Full Text PDF

Nuclear factor of activated T cells 5 (NFAT5; also called TonEBP/OREBP) is a transcription factor that is activated by hypertonicity and induces osmoprotective genes to protect cells against hypertonic conditions. In the kidney, renal tubular NFAT5 is known to be involved in the urine concentration mechanism. Previous studies have suggested that NFAT5 modulates the immune system and exerts various effects on organ damage, depending on organ and disease states.

View Article and Find Full Text PDF

Acute infection and chronic infection are the two most common fates of pathogenic virus infections. While several factors that contribute to these fates are described, the critical control points and the mechanisms that underlie infection fate regulation are incompletely understood. Using the acute and chronic lymphocytic choriomeningitis virus (LCMV) infection model of mice, we find that the early dynamic pattern of the IFN-I response is a differentiating trait between both infection fates.

View Article and Find Full Text PDF

Persistent exposure to antigen during chronic infection or cancer renders T cells dysfunctional. The molecular mechanisms regulating this state of exhaustion are thought to be common in infection and cancer, despite obvious differences in their microenvironments. Here we found that NFAT5, an NFAT family transcription factor that lacks an AP-1 docking site, was highly expressed in exhausted CD8 T cells in the context of chronic infections and tumors but was selectively required in tumor-induced CD8 T cell exhaustion.

View Article and Find Full Text PDF
Article Synopsis
  • The skin serves as a vital barrier against dehydration and external threats, with keratinocytes (KCs) playing a key role in maintaining this barrier through Na ion transport.
  • In experiments with cultured KCs from adult mice, the absence of NFAT5 led to increased secretion of matrix proteinases like Mmp3 and Klk7, signaling NFAT5's regulatory role.
  • NFAT5 is crucial in controlling these proteinases to ensure skin integrity and developmental changes from embryos to adults, particularly by managing the delicate balance of protein expression in different stages of development.
View Article and Find Full Text PDF

The ability of innate immune cells to respond to pathogen-associated molecular patterns across a wide range of intensities is fundamental to limit the spreading of infections. Studies on transcription responses to pathogen-activated TLRs have often used relatively high TLR ligand concentrations, and less is known about their regulation under mild stimulatory conditions. We had shown that the transcription factor NFAT5 facilitates expression of antipathogen genes under TLR stimulation conditions corresponding to low pathogen loads.

View Article and Find Full Text PDF

Type I interferon (IFN-I) provides effective antiviral immunity but can exacerbate harmful inflammatory reactions and cause hematopoietic stem cell (HSC) exhaustion; therefore, IFN-I expression must be tightly controlled. While signaling mechanisms that limit IFN-I induction and function have been extensively studied, less is known about transcriptional repressors acting directly on IFN-I regulatory regions. We show that NFAT5, an activator of macrophage pro-inflammatory responses, represses Toll-like receptor 3 and virus-induced expression of IFN-I in macrophages and dendritic cells.

View Article and Find Full Text PDF

The transcription factor NFAT5, also known as TonEBP, belongs to the family of Rel homology domain-containing factors, which comprises the NF-κB proteins and the calcineurin-dependent NFAT1 to NFAT4. NFAT5 shares several structural and functional features with other Rel-family factors, for instance it recognizes DNA elements with the same core sequence as those bound by NFAT1 to 4, and like NF-κB it responds to Toll-like receptors (TLR) and activates macrophage responses to microbial products. On the other hand, NFAT5 is quite unique among Rel-family factors as it can be activated by hyperosmotic stress caused by elevated concentrations of extracellular sodium ions.

View Article and Find Full Text PDF

Neutrophils eliminate pathogens efficiently but can inflict severe damage to the host if they over-activate within blood vessels. It is unclear how immunity solves the dilemma of mounting an efficient anti-microbial defense while preserving vascular health. Here, we identify a neutrophil-intrinsic program that enabled both.

View Article and Find Full Text PDF

MHCII in antigen-presenting cells (APCs) is a key regulator of adaptive immune responses. Expression of MHCII genes is controlled by the transcription coactivator CIITA, itself regulated through cell type-specific promoters. Here we show that the transcription factor NFAT5 is needed for expression of and MHCII in macrophages, but not in dendritic cells and other APCs.

View Article and Find Full Text PDF

Functional deletion of the (sodium voltage-gated channel alpha subunit 9) gene encoding sodium channel Nav1.7 makes humans and mice pain-free. Opioid signalling contributes to this analgesic state.

View Article and Find Full Text PDF

The RNA-binding proteins Roquin-1 and Roquin-2 redundantly control gene expression and cell-fate decisions. Here, we show that Roquin not only interacts with stem-loop structures, but also with a linear sequence element present in about half of its targets. Comprehensive analysis of a minimal response element of the Nfkbid 3'-UTR shows that six stem-loop structures cooperate to exert robust and profound post-transcriptional regulation.

View Article and Find Full Text PDF

Macrophages are exquisite sensors of tissue homeostasis that can rapidly switch between pro- and anti-inflammatory or regulatory modes to respond to perturbations in their microenvironment. This functional plasticity involves a precise orchestration of gene expression patterns whose transcriptional regulators have not been fully characterized. We had previously identified the transcription factor NFAT5 as an activator of TLR-induced responses, and in this study we explore its contribution to macrophage functions in different polarization settings.

View Article and Find Full Text PDF

Stress-activated transcription factors influence T-cell function in different physiopathologic contexts. NFAT5, a relative of nuclear factor κB and the calcineurin-activated NFATc transcription factors, protects mammalian cells from hyperosmotic stress caused by the elevation of extracellular sodium levels. In T cells exposed to hypernatremia, NFAT5 not only induces osmoprotective gene products but also cytokines and immune receptors, which raises the question of whether this factor could regulate other T-cell functions in osmostress-independent contexts.

View Article and Find Full Text PDF

Almost 30 years ago pioneering work by the laboratories of Harald von Boehmer and Susumo Tonegawa provided the first indications that developing thymocytes could assemble a functional TCRβ chain-containing receptor complex, the pre-TCR, before TCRα expression. The discovery and study of the pre-TCR complex revealed paradigms of signaling pathways in control of cell survival and proliferation, and culminated in the recognition of the multifunctional nature of this receptor. As a receptor integrated in a dynamic developmental process, the pre-TCR must be viewed not only in the light of the biological outcomes it promotes, but also in context with those molecular processes that drive its expression in thymocytes.

View Article and Find Full Text PDF

The link between autoimmune diseases and primary immunodeficiency syndromes has been increasingly appreciated. Immunologic evaluation of a young man with autoimmune enterocolopathy and unexplained infections revealed evidence of immunodeficiency, including IgG subclass deficiency, impaired Ag-induced lymphocyte proliferation, reduced cytokine production by CD8(+) T lymphocytes, and decreased numbers of NK cells. Genetic evaluation identified haploinsufficiency of NFAT5, a transcription factor regulating immune cell function and cellular adaptation to hyperosmotic stress, as a possible cause of this syndrome.

View Article and Find Full Text PDF

The kinase mammalian target of rapamycin (mTOR) is a central regulator of cell growth and proliferation that integrates inputs from growth factor receptors, nutrient availability, intracellular ATP (adenosine 5'-triphosphate), and a variety of stressors. Since early works in the mid-1990s uncovered the role of mTOR in stimulating protein translation, this kinase has emerged as a rather multifaceted regulator of numerous processes. Whereas mTOR is generally activated by growth- and proliferation-stimulating signals, its activity can be reduced and even suppressed when cells are exposed to a variety of stress conditions.

View Article and Find Full Text PDF

Background: To analyze the incidence and clinical-microbiological characteristics of osteomyelitis (OM) in a tertiary Spanish hospital.

Methods: All cases diagnosed with OM between January 2007 and December 2010 were retrospectively reviewed. The variables examined include epidemiological characteristics, risk factors, affected bone, radiographic changes, histology, microbiological culture results, antibiotic treatment, and the need for surgery.

View Article and Find Full Text PDF

The Rel-like transcription factors nuclear factor kappa B (NF-κB) and the calcineurin-dependent nuclear factor of activated T cells (NFATc) control specific points of thymocyte maturation. Thymocytes also express a distinct member of the Rel family, the calcineurin-independent, osmostress response regulator NFAT5. Here we show that IKKβ regulates the expression of NFAT5 in thymocytes, which in turn contributes to the survival of T-cell receptor αβ thymocytes and the transition from the β-selection checkpoint to the double-positive stage in an osmostress-independent manner.

View Article and Find Full Text PDF

Toll-like receptors (TLRs) engage networks of transcriptional regulators to induce genes essential for antimicrobial immunity. We report that NFAT5, previously characterized as an osmostress responsive factor, regulates the expression of multiple TLR-induced genes in macrophages independently of osmotic stress. NFAT5 was essential for the induction of the key antimicrobial gene Nos2 (inducible nitric oxide synthase [iNOS]) in response to low and high doses of TLR agonists but is required for Tnf and Il6 mainly under mild stimulatory conditions, indicating that NFAT5 could regulate specific gene patterns depending on pathogen burden intensity.

View Article and Find Full Text PDF

Although stress can suppress growth and proliferation, cells can induce adaptive responses that allow them to maintain these functions under stress. While numerous studies have focused on the inhibitory effects of stress on cell growth, less is known on how growth-promoting pathways influence stress responses. We have approached this question by analyzing the effect of mammalian target of rapamycin (mTOR), a central growth controller, on the osmotic stress response.

View Article and Find Full Text PDF