Publications by authors named "Cristina Hernandez-Munain"

Article Synopsis
  • - The Blood-Brain Barrier (BBB) makes it difficult for drugs to reach the central nervous system, but nanotechnology, particularly lipid nanoparticles with surface modifications, shows promise in improving drug delivery.
  • - A systematic review analyzed 2041 articles, identifying 80 relevant studies which highlighted that peptides are the most common modification for enhancing BBB permeability, followed by mixed strategies and proteins.
  • - Key findings indicated that factors like nanoparticle type, size (preferably under 150 nm), and functionalization strategy significantly influence drug delivery efficiency, underscoring the need for standardized testing methods to guide future research in this area.
View Article and Find Full Text PDF

Cationic solid-lipid nanoparticles (cSLNs) have become a promising tool for gene and RNA therapies. PEGylation (PEG) is crucial in enhancing particle stability and protection. We evaluated the impact of PEG on the physicochemical and biological characteristics of cholesteryl-oleate cSLNs (CO-cSLNs).

View Article and Find Full Text PDF

γδ T cells play important roles in immune responses by rapidly producing large quantities of cytokines. Recently, γδ T cells have been found to be involved in tissue homeostatic regulation, playing roles in thermogenesis, bone regeneration and synaptic plasticity. Nonetheless, the mechanisms involved in γδ T-cell development, especially the regulation of TCRδ gene transcription, have not yet been clarified.

View Article and Find Full Text PDF

Enhancers activate transcription through long-distance interactions with their cognate promoters within a particular subtopologically associated domain (sub-TAD). The TCRα enhancer (Eα) is located at the sub-TAD boundary between the TCRα and DAD1 genes and regulates transcription toward both sides in an ∼1-Mb region. Analysis of Eα activity in transcribing the unrearranged TCRα gene at the 5'-sub-TAD has defined Eα as inactive in CD4CD8 thymocytes, active in CD4CD8 thymocytes, and strongly downregulated in CD4 and CD8 thymocytes and αβ T lymphocytes.

View Article and Find Full Text PDF

The adaptive immune response in vertebrates depends on the expression of antigen-specific receptors in lymphocytes. T-cell receptor (TCR) gene expression is exquisitely regulated during thymocyte development to drive the generation of αβ and γδ T lymphocytes. The TCRα, TCRβ, TCRγ, and TCRδ genes exist in two different configurations, unrearranged and rearranged.

View Article and Find Full Text PDF

Alternative splicing of pre-mRNA contributes strongly to the diversity of cell- and tissue-specific protein expression patterns. Global transcriptome analyses have suggested that >90% of human multiexon genes are alternatively spliced. Alterations in the splicing process cause missplicing events that lead to genetic diseases and pathologies, including various neurological disorders, cancers, and muscular dystrophies.

View Article and Find Full Text PDF

In eukaryotes, a large amount of histones need to be synthesized during the S phase of the cell cycle to package newly synthesized DNA into chromatin. The transcription and 3' end processing of histone pre-mRNAs are controlled by the histone locus body (HLB), which is assembled on the shared promoter for and Here, we identified the Prp40 pre-mRNA processing factor (dPrp40, annotated as CG3542) as a novel HLB component. We showed that dPrp40 is essential for development, with functionally conserved activity in vertebrates and invertebrates.

View Article and Find Full Text PDF

Cajal bodies are nuclear organelles involved in the nuclear phase of small nuclear ribonucleoprotein (snRNP) biogenesis. In this study, we identified the splicing factor TCERG1 as a coilin-associated factor that is essential for Cajal body integrity. Knockdown of TCERG1 disrupts the localization of the components of Cajal bodies, including coilin and NOLC1, with coilin being dispersed in the nucleoplasm into numerous small foci, without affecting speckles, gems or the histone locus body.

View Article and Find Full Text PDF

Nanoparticle-mediated plasmid delivery is considered a useful tool to introduce foreign DNA into the cells for the purpose of DNA vaccination and/or gene therapy. Cationic solid-lipid nanoparticles (cSLNs) are considered one of the most promising non-viral vectors for nucleic acid delivery. Based on the idea that the optimization of the components is required to improve transfection efficiency, the present study aimed to formulate and characterize cholesteryl oleate-containing solid-lipid nanoparticles (CO-SLNs) incorporating protamine (P) to condense DNA to produce P:DNA:CO-SLN complexes as non-viral vectors for gene delivery with reduced cytotoxicity and high cellular uptake efficiency.

View Article and Find Full Text PDF

The development of new nanoparticle formulations that are capable of high transfection efficiency without toxicity is essential to provide new tools for gene therapy. However, the issues of complex, poorly reproducible manufacturing methods, and low efficiencies during in vivo testing have prevented translation to the clinic. We have previously reported the use of cholesteryl oleate as a novel excipient for solid lipid nanoparticles (SLNs) for the development of highly efficient and nontoxic nucleic acid delivery carriers.

View Article and Find Full Text PDF

and display identical developmental programs that depend on the activity of the enhancers Eδ and Eγ being "on" in pre-β-selection thymocytes to activate transcription and V(D)J recombination of the unrearranged genes and "off" in post-β-selection CD4CD8 double-positive thymocytes to inhibit transcription of the rearranged genes and avoid the expression of TCR δ- and TCR γ-chains in αβ T lymphocytes. Eδ and Eγ activity depends on transcription factor binding to essential Runx and Myb sites and parallels that of Notch signaling. We performed Notch gain- and loss-of-function experiments and found that Notch signaling activates and transcription by favoring the recruitment of RUNX1 and MYB to the enhancers.

View Article and Find Full Text PDF

Background: Cationic solid lipid nanoparticles (SLNs) have been given considerable attention for therapeutic nucleic acid delivery owing to their advantages over viral and other nanoparticle delivery systems. However, poor delivery efficiency and complex formulations hinder the clinical translation of SLNs.

Aim: The aim of this study was to formulate and characterize SLNs incorporating the cholesterol derivative cholesteryl oleate to produce SLN-nucleic acid complexes with reduced cytotoxicity and more efficient cellular uptake.

View Article and Find Full Text PDF

Studies of the spatial organization of the highly compartmentalized eukaryotic nucleus and dynamics of transcription and RNA processing within it are fundamental for fully understanding how gene expression is regulated in the cell. Although some progress has been made in deciphering the functional consequences of this complex network of interacting molecules in the context of nuclear organization, how proteins and RNA move in the nucleus and how the transcription and RNA processing machineries find their targets are important questions that remain largely unexplored. Here, we review major hallmarks and novel insights regarding the movement of RNA and proteins in the context of nuclear organization as well as the mechanisms by which the proteins involved in RNA processing localize to specific nuclear compartments.

View Article and Find Full Text PDF

The tightly regulated process of precursor messenger RNA (pre-mRNA) alternative splicing (AS) is a key mechanism in the regulation of gene expression. Defects in this regulatory process affect cellular functions and are the cause of many human diseases. Recent advances in our understanding of splicing regulation have led to the development of new tools for manipulating splicing for therapeutic purposes.

View Article and Find Full Text PDF

TCERG1 is a highly conserved human protein implicated in interactions with the transcriptional and splicing machinery that is associated with neurodegenerative disorders. Biochemical, neuropathological, and genetic evidence suggests an important role for TCERG1 in Huntington's disease (HD) pathogenesis. At present, the molecular mechanism underlying TCERG1-mediated neuronal effects is unknown.

View Article and Find Full Text PDF

Non-viral delivery using cationic solid lipid nanoparticles (SLNs) represents a useful strategy to introduce large DNA and RNA molecules to target cells. A careful selection of components and their amounts is critical to improve transfection efficiency. In this work, a selected and optimized formulation of SLNs was used to efficiently transfect circular DNA and linear RNA molecules into cells.

View Article and Find Full Text PDF

Coupling between transcription and RNA processing is key for gene regulation. Using live-cell photobleaching techniques, we investigated the factor TCERG1, which coordinates transcriptional elongation with splicing. We demonstrate that TCERG1 is highly mobile in the nucleoplasm and that this mobility is slightly decreased when it is associated with speckles.

View Article and Find Full Text PDF

The alternative splicing (AS) of precursor messenger RNA (pre-mRNA) is a tightly regulated process through which introns are removed to leave the resulting exons in the mRNA appropriately aligned and ligated. The AS of pre-mRNA is a key mechanism for increasing the complexity of proteins encoded in the genome. In humans, more than 90% of genes undergo AS, underscoring the importance of this process in RNA biogenesis.

View Article and Find Full Text PDF

Here, we present evidence for a specific role of the splicing-related factor TCERG1 in regulating apoptosis in live cells by modulating the alternative splicing of the apoptotic genes Bcl-x and Fas. We show that TCERG1 modulates Bcl-x alternative splicing during apoptosis and its activity in Bcl-x alternative splicing correlates with the induction of apoptosis, as determined by assessing dead cells, sub-G1-phase cells, annexin-V binding, cell viability, and cleavage of caspase-3 and PARP-1. Furthermore, the effect of TCERG1 on apoptosis involved changes in mitochondrial membrane permeabilization.

View Article and Find Full Text PDF

Tcra/Tcrd includes 2 genes with distinct developmental programs controlled by 2 distant enhancers, Eα and Eδ. These enhancers work as a developmental switch during thymocyte development and they are essential for generation of αβ and γδ T-lymphocytes. Tcra and Tcrd transit from an unrearranged configuration to a rearranged configuration during T-cell development.

View Article and Find Full Text PDF

The Tcra enhancer (Eα) is essential for Tcra locus germ-line transcription and primary Vα-to-Jα recombination during thymocyte development. We found that Eα is inhibited late during thymocyte differentiation and in αβ T lymphocytes, indicating that it is not required to drive transcription of rearranged Tcra genes. Eα inactivation resulted in the disruption of functional long-range enhancer-promoter interactions and was associated with loss of Eα-dependent histone modifications at promoter and enhancer regions, and reduced expression and recruitment of E2A to the Eα enhanceosome in T cells.

View Article and Find Full Text PDF

The first stable complex formed during the assembly of spliceosomes onto pre-mRNA substrates in mammals includes U1 snRNP, which recognizes the 5' splice site, and the splicing factors SF1 and U2AF, which bind the branch point sequence, polypyrimidine tract, and 3' splice site. The 5' and 3' splice site complexes are thought to be joined together by protein-protein interactions mediated by factors that ensure the fidelity of the initial splice site recognition. In this study, we identified and characterized PRPF40B, a putative mammalian ortholog of the U1 snRNP-associated yeast splicing factor Prp40.

View Article and Find Full Text PDF

Solid lipid nanoparticles (SLNs) are being considered as a new approach for therapeutics for many known diseases. In addition to drug delivery, their use as non-viral vectors for gene delivery can be achieved by the inclusion of cationic lipids, which provide a positive surface potential that favours binding to the DNA backbone. This work is based on the idea that the optimization of the components is required as the first step in simplifying the qualitative and quantitative composition of SLNs as much as possible without affecting the essential properties that define SLNs as optimal non-viral vectors for gene delivery.

View Article and Find Full Text PDF

Background: Control of RNA polymerase II (RNAPII) release from pausing has been proposed as a checkpoint mechanism to ensure optimal RNAPII activity, especially in large, highly regulated genes. HIV-1 gene expression is highly regulated at the level of elongation, which includes transcriptional pausing that is mediated by both viral and cellular factors. Here, we present evidence for a specific role of the elongation-related factor TCERG1 in regulating the extent of HIV-1 elongation and viral replication in vivo.

View Article and Find Full Text PDF

Transcription elongation regulator 1 (TCERG1) is a human factor implicated in interactions with the spliceosome as a coupler of transcription and splicing. The protein is highly concentrated at the interface between speckles (the compartments enriched in splicing factors) and nearby transcription sites. Here, we identified the FF4 and FF5 domains of TCERG1 as the amino acid sequences required to direct this protein to the periphery of nuclear speckles, where coordinated transcription/RNA processing events occur.

View Article and Find Full Text PDF