Publications by authors named "Cristina Gutierrez-Vazquez"

Astrocytes are multi-functional glial cells in the central nervous system that play critical roles in modulation of metabolism, extracellular ion and neurotransmitter levels, and synaptic plasticity. Astrocyte-derived signaling molecules mediate many of these modulatory functions of astrocytes, including vesicular release of ATP. In the present study, we used a unique genetic mouse model to investigate the functional significance of astrocytic exocytosis of ATP.

View Article and Find Full Text PDF

ISG20L2, a 3' to 5' exoribonuclease previously associated with ribosome biogenesis, is identified here in activated T cells as an enzyme with a preferential affinity for uridylated miRNA substrates. This enzyme is upregulated in T lymphocytes upon TCR and IFN type I stimulation and appears to be involved in regulating T cell function. ISG20L2 silencing leads to an increased basal expression of CD69 and induces greater IL2 secretion.

View Article and Find Full Text PDF

Dendritic cells (DCs) have a role in the development and activation of self-reactive pathogenic T cells. Genetic variants that are associated with the function of DCs have been linked to autoimmune disorders, and DCs are therefore attractive therapeutic targets for such diseases. However, developing DC-targeted therapies for autoimmunity requires identification of the mechanisms that regulate DC function.

View Article and Find Full Text PDF

Dendritic cells (DCs) control the generation of self-reactive pathogenic T cells. Thus, DCs are considered attractive therapeutic targets for autoimmune diseases. Using single-cell and bulk transcriptional and metabolic analyses in combination with cell-specific gene perturbation studies we identified a negative feedback regulatory pathway that operates in DCs to limit immunopathology.

View Article and Find Full Text PDF

Genome-wide association studies have identified risk loci linked to inflammatory bowel disease (IBD)-a complex chronic inflammatory disorder of the gastrointestinal tract. The increasing prevalence of IBD in industrialized countries and the augmented disease risk observed in migrants who move into areas of higher disease prevalence suggest that environmental factors are also important determinants of IBD susceptibility and severity. However, the identification of environmental factors relevant to IBD and the mechanisms by which they influence disease has been hampered by the lack of platforms for their systematic investigation.

View Article and Find Full Text PDF

Robust protocols are required to investigate the molecular mechanisms that control astrocyte metabolism and pro-inflammatory activities. In the present protocol, we describe step by step the isolation and culture of primary murine astrocytes from neonatal brains, followed by their genetic manipulation with siRNA. We further describe cytokine activation of the cultured astrocytes for the analysis of their pro-inflammatory responses, and the oxygen consumption analysis to assess their metabolic function.

View Article and Find Full Text PDF

Inflammatory bowel disease (IBD) is a complex chronic inflammatory disorder of the gastrointestinal tract. Extracellular adenosine triphosphate (eATP) produced by the commensal microbiota and host cells activates purinergic signaling, promoting intestinal inflammation and pathology. Based on the role of eATP in intestinal inflammation, we developed yeast-based engineered probiotics that express a human P2Y2 purinergic receptor with up to a 1,000-fold increase in eATP sensitivity.

View Article and Find Full Text PDF

Cell-cell interactions control the physiology and pathology of the central nervous system (CNS). To study astrocyte cell interactions in vivo, we developed rabies barcode interaction detection followed by sequencing (RABID-seq), which combines barcoded viral tracing and single-cell RNA sequencing (scRNA-seq). Using RABID-seq, we identified axon guidance molecules as candidate mediators of microglia-astrocyte interactions that promote CNS pathology in experimental autoimmune encephalomyelitis (EAE) and, potentially, multiple sclerosis (MS).

View Article and Find Full Text PDF

Astrocytes are glial cells that are abundant in the central nervous system (CNS) and that have important homeostatic and disease-promoting functions. However, little is known about the homeostatic anti-inflammatory activities of astrocytes and their regulation. Here, using high-throughput flow cytometry screening, single-cell RNA sequencing and CRISPR-Cas9-based cell-specific in vivo genetic perturbations in mice, we identify a subset of astrocytes that expresses the lysosomal protein LAMP1 and the death receptor ligand TRAIL.

View Article and Find Full Text PDF

Zika virus (ZIKV) is a flavivirus linked to multiple birth defects including microcephaly, known as congenital ZIKV syndrome. The identification of host factors involved in ZIKV replication may guide efficacious therapeutic interventions. In genome-wide transcriptional studies, we found that ZIKV infection triggers aryl hydrocarbon receptor (AHR) activation.

View Article and Find Full Text PDF

Intercellular communication orchestrates effective immune responses against disease-causing agents. Extracellular vesicles (EVs) are potent mediators of cell-cell communication. EVs carry bioactive molecules, including microRNAs, which modulate gene expression and function in the recipient cell.

View Article and Find Full Text PDF

Metabolism has been shown to control peripheral immunity, but little is known about its role in central nervous system (CNS) inflammation. Through a combination of proteomic, metabolomic, transcriptomic, and perturbation studies, we found that sphingolipid metabolism in astrocytes triggers the interaction of the C2 domain in cytosolic phospholipase A2 (cPLA2) with the CARD domain in mitochondrial antiviral signaling protein (MAVS), boosting NF-κB-driven transcriptional programs that promote CNS inflammation in experimental autoimmune encephalomyelitis (EAE) and, potentially, multiple sclerosis. cPLA2 recruitment to MAVS also disrupts MAVS-hexokinase 2 (HK2) interactions, decreasing HK enzymatic activity and the production of lactate involved in the metabolic support of neurons.

View Article and Find Full Text PDF

In the version of this article initially published, author Alexandre Prat's surname was misspelled. The error has been corrected in the HTML and PDF versions of the article.

View Article and Find Full Text PDF

Tumor-associated macrophages (TAMs) play an important role in the immune response to cancer, but the mechanisms by which the tumor microenvironment controls TAMs and T cell immunity are not completely understood. Here we report that kynurenine produced by glioblastoma cells activates aryl hydrocarbon receptor (AHR) in TAMs to modulate their function and T cell immunity. AHR promotes CCR2 expression, driving TAM recruitment in response to CCL2.

View Article and Find Full Text PDF

Genome-wide studies have identified genetic variants linked to neurologic diseases. Environmental factors also play important roles, but no methods are available for their comprehensive investigation. We developed an approach that combines genomic data, screens in a novel zebrafish model, computational modeling, perturbation studies, and multiple sclerosis (MS) patient samples to evaluate the effects of environmental exposure on CNS inflammation.

View Article and Find Full Text PDF

Microglia and astrocytes modulate inflammation and neurodegeneration in the central nervous system (CNS). Microglia modulate pro-inflammatory and neurotoxic activities in astrocytes, but the mechanisms involved are not completely understood. Here we report that TGFα and VEGF-B produced by microglia regulate the pathogenic activities of astrocytes in the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis.

View Article and Find Full Text PDF

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is activated by small molecules provided by the diet, microorganisms, metabolism, and pollutants. AhR is expressed by a number of immune cells, and thus AhR signaling provides a molecular pathway that integrates the effects of the environment and metabolism on the immune response. Studies have shown that AhR signaling plays important roles in the immune system in health and disease.

View Article and Find Full Text PDF

microRNAs (miRNAs) are tightly regulated during T lymphocyte activation to enable the establishment of precise immune responses. Here, we analyzed the changes of the miRNA profiles of T cells in response to activation by cognate interaction with dendritic cells. We also studied mRNA targets common to miRNAs regulated in T cell activation.

View Article and Find Full Text PDF

Activation of T lymphocytes requires a tight regulation of microRNA (miRNA) expression. Terminal uridyltransferases (TUTases) catalyze 3' nontemplated nucleotide addition (3'NTA) to miRNAs, which may influence miRNA stability and function. Here, we investigated 3'NTA to mature miRNA in CD4 T lymphocytes by deep sequencing.

View Article and Find Full Text PDF

Bladder cancer is the second most frequent malignancy of the urinary tract after prostate cancer. Current diagnostic techniques, such as cystoscopy and biopsies are highly invasive and accompanied of undesirable side effects. Moreover, there are no suitable biomarkers for relapse or progression prognosis.

View Article and Find Full Text PDF

The immune system is composed of different cell types localised throughout the organism to sense and respond to pathological situations while maintaining homeostasis under physiological conditions. Intercellular communication between immune cells is essential to coordinate an effective immune response and involves both cell contact dependent and independent processes that ensure the transfer of information between bystander and distant cells. There is a rapidly growing body of evidence on the pivotal role of extracellular vesicles (EVs) in cell communication and these structures are emerging as important mediators for immune modulation upon delivery of their molecular cargo.

View Article and Find Full Text PDF

Extracellular vesicles (EVs), a term that includes both exosomes of endocytic origin and vesicles derived from plasma membranes, are continuously secreted by cells to the extracellular environment, and represent a novel vehicle for cell-cell communication. Exosomes contain specific repertoires of proteins and RNAs, indicating the existence of mechanisms that control the sorting of molecules into them. Although the molecular mechanisms that regulate the loading of proteins into exosomes have been studied for years, the sorting of RNA has been elusive until recently.

View Article and Find Full Text PDF

Exosomes are released by most cells to the extracellular environment and are involved in cell-to-cell communication. Exosomes contain specific repertoires of mRNAs, microRNAs (miRNAs) and other non-coding RNAs that can be functionally transferred to recipient cells. However, the mechanisms that control the specific loading of RNA species into exosomes remain unknown.

View Article and Find Full Text PDF

Immune cells release microRNA-containing exosomes that can be taken up by recipient cells. Exosomes can thus act as mediators of cell-cell communication through direct exchange of genetic material between cells. Exosome-mediated transfer of miRNAs between T cells and antigen-presenting cells (APCs) can take place over long distances.

View Article and Find Full Text PDF