Schizophrenia is associated with altered cortical circuitry. Although the schizophrenia risk gene is known to affect the wiring of inhibitory interneurons, its role in excitatory neurons and axonal development is unclear. Here, we investigated the role of Nrg1 in the development of the corpus callosum, the major interhemispheric connection formed by cortical excitatory neurons.
View Article and Find Full Text PDFNeural stem cells (NSCs) in the adult murine subependymal zone balance their self-renewal capacity and glial identity with the potential to generate neurons during the lifetime. Adult NSCs exhibit lineage priming via pro-neurogenic fate determinants. However, the protein levels of the neural fate determinants are not sufficient to drive direct differentiation of adult NSCs, which raises the question of how cells along the neurogenic lineage avoid different conflicting fate choices, such as self-renewal and differentiation.
View Article and Find Full Text PDFAdult neurogenesis is supported by multipotent neural stem cells (NSCs) with unique properties and growth requirements. Adult NSCs constitute a reversibly quiescent cell population that can be activated by extracellular signals from the microenvironment in which they reside in vivo. Although genomic imprinting plays a role in adult neurogenesis through dose regulation of some relevant signals, the roles of many imprinted genes in the process remain elusive.
View Article and Find Full Text PDFNeocortical progenitor cells generate subtypes of excitatory projection neurons in sequential order followed by the generation of astrocytes. The transcription factor zinc finger and BTB domain-containing protein 20 (ZBTB20) has been implicated in regulation of cell specification during neocortical development. Here, we show that ZBTB20 instructs the generation of a subset of callosal projections neurons in cortical layers II/III in mouse.
View Article and Find Full Text PDFRadial glial progenitor cells (RGCs) in the dorsal telencephalon directly or indirectly produce excitatory projection neurons and macroglia of the neocortex. Recent evidence shows that the pool of RGCs is more heterogeneous than originally thought and that progenitor subpopulations can generate particular neuronal cell types. Using single-cell RNA sequencing, we have studied gene expression patterns of RGCs with different neurogenic behavior at early stages of cortical development.
View Article and Find Full Text PDFThe neocortex is an exquisitely organized structure achieved through complex cellular processes from the generation of neural cells to their integration into cortical circuits after complex migration processes. During this long journey, neural cells need to establish and release adhesive interactions through cell surface receptors known as cell adhesion molecules (CAMs). Several types of CAMs have been described regulating different aspects of neurodevelopment.
View Article and Find Full Text PDFIn utero electroporation is an in vivo DNA transfer technique extensively used to study the molecular and cellular mechanisms underlying mammalian corticogenesis. This procedure takes advantage of the brain ventricles to allow the introduction of DNA of interest and uses a pair of electrodes to direct the entrance of the genetic material into the cells lining the ventricle, the neural stem cells. This method allows researchers to label the desired cells and/or manipulate the expression of genes of interest in those cells.
View Article and Find Full Text PDFCadherins are crucial for the radial migration of excitatory projection neurons into the developing neocortical wall. However, the specific cadherins and the signaling pathways that regulate radial migration are not well understood. Here, we show that cadherin 2 (CDH2) and CDH4 cooperate to regulate radial migration in mouse brain via the protein tyrosine phosphatase 1B (PTP1B) and α- and β-catenins.
View Article and Find Full Text PDFInterneurons are critical components of the neocortical circuitry but the mechanisms that regulate their distribution in the neocortex are unclear. In this issue of Neuron, Harwell et al. (2015) and Mayer et al.
View Article and Find Full Text PDFUsing genetic fate-mapping with Cux2-Cre and Cux2-CreERT2 mice we demonstrated that the neocortical ventricular zone (VZ) contains radial glial cells (RGCs) with restricted fate potentials (Franco et al., 2012). Using the same mouse lines, Guo et al.
View Article and Find Full Text PDFRadial glial cells (RGCs) in the ventricular neuroepithelium of the dorsal telencephalon are the progenitor cells for neocortical projection neurons and astrocytes. Here we show that the adherens junction proteins afadin and CDH2 are critical for the control of cell proliferation in the dorsal telencephalon and for the formation of its normal laminar structure. Inactivation of afadin or CDH2 in the dorsal telencephalon leads to a phenotype resembling subcortical band heterotopia, also known as "double cortex," a brain malformation in which heterotopic gray matter is interposed between zones of white matter.
View Article and Find Full Text PDFCajal-Retzius (CR) cells are a transient cell population of the CNS that is critical for brain development. In the neocortex, CR cells secrete reelin to instruct the radial migration of projection neurons. It has remained unexplored, however, whether CR cells provide additional molecular cues important for brain development.
View Article and Find Full Text PDFDuring development of the mammalian cerebral cortex, radial glial cells (RGCs) generate layer-specific subtypes of excitatory neurons in a defined temporal sequence, in which lower-layer neurons are formed before upper-layer neurons. It has been proposed that neuronal subtype fate is determined by birthdate through progressive restriction of the neurogenic potential of a common RGC progenitor. Here, we demonstrate that the murine cerebral cortex contains RGC sublineages with distinct fate potentials.
View Article and Find Full Text PDFNeuronal migration is critical for establishing neocortical cell layers and migration defects can cause neurological and psychiatric diseases. Recent studies show that radially migrating neocortical neurons use glia-dependent and glia-independent modes of migration, but the signaling pathways that control different migration modes and the transitions between them are poorly defined. Here, we show that Dab1, an essential component of the reelin pathway, is required in radially migrating neurons for glia-independent somal translocation, but not for glia-guided locomotion.
View Article and Find Full Text PDFThe preplate of the cerebral cortex contains projection neurons that connect the cortical primordium with the subpallium. These are collectively named pioneer neurons. After preplate partition, most of these pioneer neurons become subplate neurons.
View Article and Find Full Text PDFMetabotropic glutamate receptor 1 (mGluR1) has been related to processes underlying learning in hippocampal circuits, but demonstrating its involvement in synaptic plasticity when measured directly on the relevant circuit of a learning animal has proved to be technically difficult. We have recorded the functional changes taking place at the hippocampal CA3-CA1 synapse during the acquisition of an associative task in conscious mice carrying a targeted disruption of the mGluR1 gene. Animals were classically conditioned to evoke eyelid responses, using a trace (conditioned stimulus [CS], tone; unconditioned stimulus [US], electric shock) paradigm.
View Article and Find Full Text PDFBackground: Perlecan is a proteoglycan expressed in the basal lamina of the neuroepithelium during development. Perlecan absence does not impair basal lamina assembly, although in the 55% of the mutants early disruptions of this lamina conducts to exencephaly, impairing brain development. The rest of perlecan-null brains complete its prenatal development, maintain basal lamina continuity interrupted by some isolated ectopias, and are microcephalic.
View Article and Find Full Text PDF