We report the outcome of a high-throughput small-molecule screen to identify novel, nontoxic, inhibitors of Trypansoma cruzi, as potential starting points for therapeutics to treat for both the acute and chronic stages of Chagas disease. Two compounds were identified that displayed nanomolar inhibition of T. cruzi and an absence of activity against host cells at the highest tested dose.
View Article and Find Full Text PDFBackground: Target repurposing utilizes knowledge of "druggable" targets obtained in one organism and exploits this information to pursue new potential drug targets in other organisms. Here we describe such studies to evaluate whether inhibitors targeting the kinase domain of the mammalian Target of Rapamycin (mTOR) and human phosphoinositide-3-kinases (PI3Ks) show promise against the kinetoplastid parasites Trypanosoma brucei, T. cruzi, Leishmania major, and L.
View Article and Find Full Text PDFBackground: Human populations that are naturally subjected to Plasmodium infection do not acquire complete protection against the liver stage of this parasite despite prolonged and frequent exposure. However, sterile immunity against Plasmodium liver stage can be achieved after repeated exposure to radiation attenuated sporozoites. The reasons for this different response remain largely unknown, but a suppressive effect of blood stage Plasmodium infection has been proposed as a cause for the lack of liver stage protection.
View Article and Find Full Text PDFBackground: Infection with Plasmodium is the cause of malaria, a disease characterized by a high inflammatory response in the blood. Dendritic cells (DC) participate in both adaptive and innate immune responses, influencing the generation of inflammatory responses. DC can be activated through different receptors, which recognize specific molecules in microbes and induce the maturation of DC.
View Article and Find Full Text PDF