Publications by authors named "Cristina Fragoso"

Diverse structures facilitate direct exchange of proteins between cells, including plasmadesmata in plants and tunnelling nanotubes in bacteria and higher eukaryotes.  Here we describe a new mechanism of protein transfer, flagellar membrane fusion, in the unicellular parasite Trypanosoma brucei. When fluorescently tagged trypanosomes were co-cultured, a small proportion of double-positive cells were observed.

View Article and Find Full Text PDF

The coat of Trypanosoma brucei consists mainly of glycosylphosphatidylinositol-anchored proteins that are present in several million copies and are characteristic of defined stages of the life cycle. While these major components of the coats of bloodstream forms and procyclic (insect midgut) forms are well characterised, very little is known about less abundant stage-regulated surface proteins and their roles in infection and transmission. By creating epitope-tagged versions of procyclic-specific surface antigen 2 (PSSA-2) we demonstrated that it is a membrane-spanning protein that is expressed by several different life cycle stages in tsetse flies, but not by parasites in the mammalian bloodstream.

View Article and Find Full Text PDF

Procyclic forms of Trypanosoma brucei reside in the midgut of tsetse flies where they are covered by several million copies of glycosylphosphatidylinositol-anchored proteins known as procyclins. It has been proposed that procyclins protect parasites against proteases and/or participate in tropism, directing them from the midgut to the salivary glands. There are four different procyclin genes, each subject to elaborate levels of regulation.

View Article and Find Full Text PDF

EP and GPEET procyclins are the major surface glycoproteins of Trypanosoma brucei in the midgut of tsetse flies (Glossina spp.). The procyclin genes are located at the beginning of polycistronic transcription units and are followed by at least one procyclin-associated gene (PAG).

View Article and Find Full Text PDF

Activation of the phosphoinositide 3-kinases (PI 3-kinases) has been implicated in multiple cellular responses such as proliferation and survival, membrane and cytoskeletal reorganization, and intracellular vesicular trafficking. The activities and subcellular localization of PI 3-kinases were shown to be regulated by phosphorylation. Previously we demonstrated that class II HsPIK3-C2alpha becomes phosphorylated upon inhibition of RNA pol II-dependent transcription (Didichenko, S.

View Article and Find Full Text PDF