The cell size of picophytoplankton populations affects their ecology and biogeochemical role, but how different environmental drivers control its variability is still not well understood. To gain insight into the role of temperature and nutrient availability as determinants of picophytoplankton population mean cell size, we carried out five microcosm experiments across the Atlantic Ocean (45°N-27°S) in which surface plankton assemblages were incubated under all combinations of three temperatures (in situ, 3 °C cooling and 3 °C warming) and two nutrient levels (unamended and addition of nitrogen and phosphorus). The overall range of variability in cell volume was 5-fold for Prochlorococcus, 8-fold for Synechococcus and 6-fold for the picoeukaryotes.
View Article and Find Full Text PDFTemperature and nutrient supply interactively control phytoplankton growth and productivity, yet the role of these drivers together still has not been determined experimentally over large spatial scales in the oligotrophic ocean. We conducted four microcosm experiments in the tropical and subtropical Atlantic (29°N-27°S) in which surface plankton assemblages were exposed to all combinations of three temperatures (in situ, 3 °C warming and 3 °C cooling) and two nutrient treatments (unamended and enrichment with nitrogen and phosphorus). We found that chlorophyll a concentration and the biomass of picophytoplankton consistently increase in response to nutrient addition, whereas changes in temperature have a smaller and more variable effect.
View Article and Find Full Text PDFContrary to predictions by the allometric theory, there is evidence that phytoplankton growth rates peak at intermediate cell sizes. However, it is still unknown if this pattern may result from the effect of experimental temperature. Here we test whether temperature affects the unimodal size scaling pattern of phytoplankton growth by (1) growing Synechococcus sp.
View Article and Find Full Text PDFTemperature and nutrient supply are key factors that control phytoplankton ecophysiology, but their role is commonly investigated in isolation. Their combined effect on resource allocation, photosynthetic strategy, and metabolism remains poorly understood. To characterize the photosynthetic strategy and resource allocation under different conditions, we analyzed the responses of a marine cyanobacterium (Synechococcus PCC 7002) to multiple combinations of temperature and nutrient supply.
View Article and Find Full Text PDF