Background: The secretion of recombinant disulfide-bond containing proteins into the periplasm of Gram-negative bacterial hosts, such as E. coli, has many advantages that can facilitate product isolation, quality and activity. However, the secretion machinery of E.
View Article and Find Full Text PDFNumerous therapeutic proteins are expressed in Escherichia coli and targeted to the periplasm in order to facilitate purification and enable disulfide bond formation. Export is normally achieved by the Sec pathway, which transports proteins through the plasma membrane in a reduced, unfolded state. The Tat pathway is a promising alternative means of export, because it preferentially exports correctly folded proteins; however, the reducing cytoplasm of standard strains has been predicted to preclude export by Tat of proteins that contain disulfide bonds in the native state because, in the reduced state, they are sensed as misfolded and rejected.
View Article and Find Full Text PDFNumerous high-value therapeutic proteins are produced in Escherichia coli and exported to the periplasm, as this approach simplifies downstream processing and enables disulfide bond formation. Most recombinant proteins are exported by the Sec pathway, which transports substrates across the plasma membrane in an unfolded state. The Tat system also exports proteins to the periplasm, but transports them in a folded state.
View Article and Find Full Text PDFThe twin-arginine translocation (Tat) system transports folded proteins across the plasma membrane in bacteria, and heterologous proteins can be exported by this pathway if a Tat-type signal peptide is present at the N-terminus. The system thus has potential for biopharmaceutical production in Escherichia coli, where export to the periplasm is often a favoured approach. Previous studies have shown that E.
View Article and Find Full Text PDFNumerous high-value recombinant proteins that are produced in bacteria are exported to the periplasm as this approach offers relatively easy downstream processing and purification. Most recombinant proteins are exported by the Sec pathway, which transports them across the plasma membrane in an unfolded state. The twin-arginine translocation (Tat) system operates in parallel with the Sec pathway but transports substrate proteins in a folded state; it therefore has potential to export proteins that are difficult to produce using the Sec pathway.
View Article and Find Full Text PDFThe twin arginine translocation (Tat) pathway occurs naturally in E. coli and has the distinct ability to translocate folded proteins across the inner membrane of the cell. It has the potential to export commercially useful proteins that cannot be exported by the ubiquitous Sec pathway.
View Article and Find Full Text PDFThe twin-arginine translocation (Tat) system operates in plant thylakoid membranes and the plasma membranes of most free-living bacteria. In bacteria, it is responsible for the export of a number of proteins to the periplasm, outer membrane or growth medium, selecting substrates by virtue of cleavable N-terminal signal peptides that contain a key twin-arginine motif together with other determinants. Its most notable attribute is its ability to transport large folded proteins (even oligomeric proteins) across the tightly sealed plasma membrane.
View Article and Find Full Text PDFThe twin-arginine translocation (Tat) system translocates folded proteins across biological membranes. It has been suggested that the Tat system of Escherichia coli can direct Tat substrates to degradation if they are not properly folded [Matos, C.F.
View Article and Find Full Text PDFBacterial Tat systems export folded proteins, including FeS proteins such as NrfC and NapG, which acquire their cofactors before translocation. NrfC and NapG are proofread by the Tat pathway, and misfolded examples are degraded after interaction with the translocon. Here, we identify TatD as a crucial component of this quality control system in Escherichia coli.
View Article and Find Full Text PDFThe twin-arginine translocation (Tat) system transports folded proteins across the bacterial plasma membrane, including FeS proteins that receive their cofactors in the cytoplasm. We have studied two Escherichia coli Tat substrates, NrfC and NapG, to examine how, or whether, the system exports only correctly folded and assembled FeS proteins. With NrfC, substitutions in even one of four predicted FeS centres completely block export, indicating an effective proofreading activity.
View Article and Find Full Text PDF