The mechanisms of viral RNA genome segmentation are unknown. On extensive passage of foot-and-mouth disease virus in baby hamster kidney-21 cells, the virus accumulated multiple point mutations and underwent a transition akin to genome segmentation. The standard single RNA genome molecule was replaced by genomes harboring internal in-frame deletions affecting the L- or capsid-coding region.
View Article and Find Full Text PDFLow fidelity replication and the absence of error-repair activities in RNA viruses result in complex and adaptable ensembles of related genomes in the viral population, termed quasispecies, with important implications for natural infections. Theoretical predictions suggested that elevated replication error rates in RNA viruses might be near to a maximum compatible with viral viability. This fact encouraged the use of mutagenic nucleosides as a new antiviral strategy to induce viral extinction through increased replication error rates.
View Article and Find Full Text PDFThe evolutionary benefit of viral genome segmentation is a classical, yet unsolved question in evolutionary biology and RNA genetics. Theoretical studies anticipated that replication of shorter RNA segments could provide a replicative advantage over standard size genomes. However, this question has remained elusive to experimentalists because of the lack of a proper viral model system.
View Article and Find Full Text PDFBackground: Success of a viral infection requires that each infected cell delivers a sufficient number of infectious particles to allow new rounds of infection. In picornaviruses, viral replication is initiated by the viral polymerase and a viral-coded protein, termed VPg, that primes RNA synthesis. Foot-and-mouth disease virus (FMDV) is exceptional among picornaviruses in that its genome encodes 3 copies of VPg.
View Article and Find Full Text PDFBackground: New vaccine designs are needed to control diseases associated with antigenically variable RNA viruses. Foot-and-mouth disease (FMD) is a highly contagious disease of livestock that inflicts severe economic losses. Although the current whole-virus chemically inactivated vaccine has proven effective, it has led to new outbreaks of FMD because of incomplete inactivation of the virus or the escape of infectious virus from vaccine production premises.
View Article and Find Full Text PDFPassage of poliovirus (PV) or foot-and-mouth disease virus (FMDV) in the presence of ribavirin selected for viruses with decreased sensitivity to R, which included different mutations in their polymerase (3D): G64S located in the finger subdomain in the case of PV and M296I located within loop beta9-alpha11 at the active site in the case of FMDV. To investigate why disparate substitutions were selected in two closely related 3Ds, we constructed FMDVs with a 3D that included either G62S (the equivalent replacement in FMDV of PV G64S), M296I, or both substitutions. G62S, but not M296I, inflicts upon FMDV a strong selective disadvantage which is partially compensated for by the substitution M296I.
View Article and Find Full Text PDFDuring replication, RNA viruses rapidly generate diverse mutant progeny which differ in their ability to kill host cells. We report that the progeny of a single RNA viral genome diversified during hundreds of passages in cell culture and self-organized into two genetically distinct subpopulations that exhibited the competition-colonization dynamics previously recognized in many classical ecological systems. Viral colonizers alone were more efficient in killing cells than competitors in culture.
View Article and Find Full Text PDFRepeated bottleneck passages of RNA viruses result in accumulation of mutations and fitness decrease. Here, we show that clones of foot-and-mouth disease virus (FMDV) subjected to bottleneck passages, in the form of plaque-to-plaque transfers in BHK-21 cells, increased the thermosensitivity of the viral clones. By constructing infectious FMDV clones, we have identified the amino acid substitution M54I in capsid protein VP1 as one of the lesions associated with thermosensitivity.
View Article and Find Full Text PDFThe characterization of virulence determinants of pathogenic agents is of utmost relevance for the design of disease control strategies. So far, two classes of virulence determinants have been characterized for viral populations: those imprinted in the nucleotide sequence of some specific genomic regions and those that depend on the complexity of the viral population as such. Here we provide evidence of a virulence determinant that depends neither on a genomic sequence nor on detectable differences in population complexity.
View Article and Find Full Text PDFThe basis for a dual inhibitory and mutagenic activity of 5-fluorouracil (5-FU) on foot-and-mouth disease virus (FMDV) RNA replication has been investigated with purified viral RNA-dependent RNA polymerase (3D) in vitro. 5-Fluorouridine triphosphate acted as a potent competitive inhibitor of VPg uridylylation, the initial step of viral replication. Peptide analysis by mass spectrometry has identified a VPg fragment containing 5-fluorouridine monophosphate (FUMP) covalently attached to Tyr3, the amino acid target of the uridylylation reaction.
View Article and Find Full Text PDFSeveral biological subclones of a biological clone of foot-and-mouth disease virus (FMDV) have been subjected to many plaque-to-plaque (serial bottleneck) transfers in cell culture. At transfer 190 to 409, clones underwent a transition towards a non-cytolytic (NC) phenotype in which the virus was unable to produce plaques, representing at least a 140-fold reduction in specific infectivity relative to the parental biological clone. NC clones, however, were competent in RNA replication and established a persistent infection in cell culture without an intervening cytolytic phase.
View Article and Find Full Text PDFRNA virus replication is an error-prone event caused by the low fidelity of viral RNA-dependent RNA polymerases. Replication fidelity can be decreased further by the use of mutagenic ribonucleoside analogs to a point where viral genetic information can no longer be maintained. For foot-and-mouth disease virus, the antiviral analogs ribavirin and 5-fluorouracil have been shown to be mutagenic, contributing to virus extinction through lethal mutagenesis.
View Article and Find Full Text PDFThe relationship between parasite fitness and virulence has been the object of experimental and theoretical studies often with conflicting conclusions. Here, we provide direct experimental evidence that viral fitness and virulence, both measured in the same biological environment provided by host cells in culture, can be two unrelated traits. A biological clone of foot-and-mouth disease virus acquired high fitness and virulence (cell killing capacity) upon large population passages in cell culture.
View Article and Find Full Text PDFIn a previous study, we documented that serial passage of a biological clone of foot-and-mouth disease virus (FMDV) at high multiplicity of infection (moi) in cell culture resulted in viral populations dominated by defective genomes that included internal in-frame deletions, affecting the L and capsid-coding regions, and were infectious by complementation. In the present study, analyses of the defective genomes present in individual viral plaques, and of consensus nucleotide sequences determined for the entire genomes of sequential samples, have revealed a continuous dynamics of mutation and recombination. At some points of high genetic instability, multiple minority genomes with different internal deletions co-existed in the population.
View Article and Find Full Text PDFPicornavirus RNA replication is initiated by the covalent attachment of a UMP molecule to the hydroxyl group of a tyrosine in the terminal protein VPg. This reaction is carried out by the viral RNA-dependent RNA polymerase (3D). Here, we report the X-ray structure of two complexes between foot-and-mouth disease virus 3D, VPg1, the substrate UTP and divalent cations, in the absence and in the presence of an oligoadenylate of 10 residues.
View Article and Find Full Text PDFGenome replication in picornaviruses is catalyzed by a virally encoded RNA-dependent RNA polymerase, termed 3D. These viruses also use a small protein primer, named VPg, to initiate RNA replication. The recent explosion of structural information on picornaviral 3D polymerases has provided insights into the initiation of RNA synthesis and chain elongation.
View Article and Find Full Text PDFA foot-and-mouth disease virus (FMDV) polymerase (3D) with amino acid replacements G118D, V239M and G373D (triple DMD mutant) was obtained from a molecular clone derived from a virus population treated with ribavirin, in the transition to error catastrophe (virus extinction through lethal mutagenesis). DMD 3D was expressed in Escherichia coli, purified, and its activity compared with that of wild-type enzyme and mutant enzymes with either replacement G118D, G118A or D338A (the latter affecting the catalytic motif YGDD), generated by site-directed mutagenesis. No differences among the enzymes were noted in their interaction with monoclonal antibodies specific for the FMDV polymerase.
View Article and Find Full Text PDFRNA viruses replicate as complex distributions of non-identical but closely related variant genomes termed viral quasispecies. When the error rate during genome replication exceeds a threshold value, the genetic information cannot be maintained and the system enters error catastrophe. This violation of the error threshold results in virus extinction and it is currently being investigated as a new antiviral strategy, based on antiviral activity of some mutagenic agents.
View Article and Find Full Text PDFSerial passage of foot-and-mouth disease virus (FMDV) in BHK-21 cells at high multiplicity of infection resulted in dominance of particles containing defective RNAs that were infectious by complementation in the absence of standard viral RNA. In the present study, we show that the defective FMDV particles interfere with replication of the cognate standard virus. Coinfections of defective FMDV with standard FMDV mutants that differ up to 151-fold in relative fitness have documented that the degree of interference is higher for low fitness than for high fitness standard virus.
View Article and Find Full Text PDFPopulation bottlenecks are stochastic events that strongly condition the structure and evolution of natural populations. Their effects are readily observable in highly heterogeneous populations, such as RNA viruses, since bottlenecks cause a fast accumulation of mutations. Considering that most mutations are deleterious, it was predicted that the frequent application of bottlenecks would yield a population unable to replicate.
View Article and Find Full Text PDFThe extinction of foot-and-mouth disease virus (FMDV) is strongly influenced by mutation rates, types of mutations, relative viral fitness and virus population regimens during infection. Here we review experimental results and theoretical models that describe a contrast between the effective extinction of FMDV subjected to increased mutagenesis, and the remarkable resistance to extinction of the same and related FMDV clones subjected to serial bottleneck events. The results suggest procedures to master key parameters to develop effective antiviral strategies based on virus entry into error catastrophe.
View Article and Find Full Text PDFPassage of foot-and-mouth disease virus (FMDV) in cell culture resulted in the generation of defective RNAs that were infectious by complementation. Deletions (of nucleotides 417, 999, and 1017) mapped in the L proteinase and capsid protein-coding regions. Cell killing followed two-hit kinetics, defective genomes were encapsidated into separate viral particles, and individual viral plaques contained defective genomes with no detectable standard FMDV RNA.
View Article and Find Full Text PDFGenome replication in picornaviruses is catalyzed by a virally encoded RNA-dependent RNA polymerase, termed 3D. The enzyme performs this operation, together with other viral and probably host proteins, in the cytoplasm of their host cells. The crystal structure of the 3D polymerase of foot-and-mouth disease virus, one of the most important animal pathogens, has been determined unliganded and bound to a template-primer RNA decanucleotide.
View Article and Find Full Text PDFViral quasispecies may contain a subset of minority genomes that reflect those genomic sequences that were dominant at an early phase of quasispecies evolution. Such minority genomes are referred to as memory in viral quasispecies. A memory marker previously characterized in foot-and-mouth disease virus (FMDV) is an internal oligoadenylate tract of variable length that became dominant upon serial plaque-to-plaque transfers of FMDV clones.
View Article and Find Full Text PDFRNA viruses display high mutation rates and their populations replicate as dynamic and complex mutant distributions, termed viral quasispecies. Repeated genetic bottlenecks, which experimentally are carried out through serial plaque-to-plaque transfers of the virus, lead to fitness decrease (measured here as diminished capacity to produce infectious progeny). Here we report an analysis of fitness evolution of several low fitness foot-and-mouth disease virus clones subjected to 50 plaque-to-plaque transfers.
View Article and Find Full Text PDF