Objective: We aimed to characterize the phenotypic spectrum and functional consequences associated with variants in the gene GABRB2, coding for the γ-aminobutyric acid type A (GABA ) receptor subunit β2.
Methods: We recruited and systematically evaluated 25 individuals with variants in GABRB2, 17 of whom are newly described and 8 previously reported with additional clinical data. Functional analysis was performed using a Xenopus laevis oocyte model system.
The intent of this study was to investigate if cerebrospinal fluid (CSF) from autoimmune encephalitis (AE) patients regulates in vitro neuronal network activity differentially to healthy human control CSF (hCSF). To this end, electrophysiological effects of CSF from AE patients or hCSF were measured by in vitro neuronal network activity (ivNNA) recorded with microelectrode arrays (MEA). CSF from patients with either N-methyl-D-aspartate-receptor-antibody (pCSF, n = 7) or Leucine-rich-glioma-inactivated-1-Ab (pCSF, n = 6) associated AE suppressed global spiking activity of neuronal networks by a factor of 2.
View Article and Find Full Text PDFBackground: Genetic generalised epilepsy is the most common type of inherited epilepsy. Despite a high concordance rate of 80% in monozygotic twins, the genetic background is still poorly understood. We aimed to investigate the burden of rare genetic variants in genetic generalised epilepsy.
View Article and Find Full Text PDFGenetic epilepsies are caused by mutations in a range of different genes, many of them encoding ion channels, receptors or transporters. While the number of detected variants and genes increased dramatically in the recent years, pleiotropic effects have also been recognized, revealing that clinical syndromes with various degrees of severity arise from a single gene, a single mutation, or from different mutations showing similar functional defects. Accordingly, several genes coding for GABAA receptor subunits have been linked to a spectrum of benign to severe epileptic disorders and it was shown that a loss of function presents the major correlated pathomechanism.
View Article and Find Full Text PDFA hallmark of temporal lobe epilepsy (TLE) is hippocampal neuronal demise and aberrant mossy fiber sprouting. In addition, unrestrained neuronal activity in TLE patients induces gene expression including immediate early genes (IEGs) such as Fos and Egr1.We employed the mouse pilocarpine model to analyze the transcription factor (TF) serum response factor (SRF) in epileptogenesis, seizure induced histopathology and IEG induction.
View Article and Find Full Text PDFObjective: To delineate phenotypic heterogeneity, we describe the clinical features of a cohort of patients with GABRA1 gene mutations.
Methods: Patients with GABRA1 mutations were ascertained through an international collaboration. Clinical, EEG, and genetic data were collected.
Nucleotides act as early signals for microglial recruitment to sites of CNS injury. As microglial motility and activation can be influenced by several local factors at the site of the lesion, we investigated the effects of interferon-gamma, lipopolysaccharide (LPS) or transforming growth factor-β (TGF-β) addition to mixed glial cell cultures, on microglial migration in response to ADP, P2Y12 and P2Y1 mRNA expression as well as on the expression of an array of genes associated with the process of microglial activation. First, we demonstrated, by pharmacological inhibition and by using small interfering RNAs, that in addition to P2Y12, P2Y1 is involved in ADP-stimulated microglial migration.
View Article and Find Full Text PDF